Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
| 7 |
model_name = "hassaanik/grammar-correction-model"
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
|
| 10 |
-
# Use GPU if available, otherwise
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
| 13 |
|
|
@@ -15,26 +15,26 @@ model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
|
| 15 |
if torch.cuda.is_available():
|
| 16 |
model.half()
|
| 17 |
|
| 18 |
-
# Async grammar correction function
|
| 19 |
-
async def correct_grammar_async(
|
| 20 |
-
# Tokenize
|
| 21 |
-
inputs = tokenizer
|
| 22 |
|
| 23 |
-
# Asynchronous
|
| 24 |
-
outputs = await asyncio.to_thread(model.generate, inputs, max_length=512, num_beams=5, early_stopping=True)
|
| 25 |
|
| 26 |
-
# Decode
|
| 27 |
-
|
| 28 |
-
return
|
| 29 |
|
| 30 |
# Gradio interface function to handle input and output
|
| 31 |
def correct_grammar_interface(text):
|
| 32 |
-
corrected_text = asyncio.run(correct_grammar_async(text))
|
| 33 |
return corrected_text
|
| 34 |
|
| 35 |
-
#
|
| 36 |
with gr.Blocks() as grammar_app:
|
| 37 |
-
gr.Markdown("<h1>Async Grammar Correction
|
| 38 |
|
| 39 |
with gr.Row():
|
| 40 |
input_box = gr.Textbox(label="Input Text", placeholder="Enter text to be corrected", lines=4)
|
|
@@ -42,7 +42,7 @@ with gr.Blocks() as grammar_app:
|
|
| 42 |
|
| 43 |
submit_button = gr.Button("Correct Grammar")
|
| 44 |
|
| 45 |
-
# When the button is clicked, run the correction process
|
| 46 |
submit_button.click(fn=correct_grammar_interface, inputs=input_box, outputs=output_box)
|
| 47 |
|
| 48 |
# Launch the app
|
|
|
|
| 7 |
model_name = "hassaanik/grammar-correction-model"
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
|
| 10 |
+
# Use GPU if available, otherwise fallback to CPU
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
| 13 |
|
|
|
|
| 15 |
if torch.cuda.is_available():
|
| 16 |
model.half()
|
| 17 |
|
| 18 |
+
# Async grammar correction function with batch processing
|
| 19 |
+
async def correct_grammar_async(texts):
|
| 20 |
+
# Tokenize the batch of inputs and move it to the correct device (CPU/GPU)
|
| 21 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
|
| 22 |
|
| 23 |
+
# Asynchronous generation process
|
| 24 |
+
outputs = await asyncio.to_thread(model.generate, inputs["input_ids"], max_length=512, num_beams=5, early_stopping=True)
|
| 25 |
|
| 26 |
+
# Decode outputs in parallel
|
| 27 |
+
corrected_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
| 28 |
+
return corrected_texts
|
| 29 |
|
| 30 |
# Gradio interface function to handle input and output
|
| 31 |
def correct_grammar_interface(text):
|
| 32 |
+
corrected_text = asyncio.run(correct_grammar_async([text]))[0] # Single input for now
|
| 33 |
return corrected_text
|
| 34 |
|
| 35 |
+
# Gradio Interface with async capabilities and batch input/output
|
| 36 |
with gr.Blocks() as grammar_app:
|
| 37 |
+
gr.Markdown("<h1>Fast Async Grammar Correction</h1>")
|
| 38 |
|
| 39 |
with gr.Row():
|
| 40 |
input_box = gr.Textbox(label="Input Text", placeholder="Enter text to be corrected", lines=4)
|
|
|
|
| 42 |
|
| 43 |
submit_button = gr.Button("Correct Grammar")
|
| 44 |
|
| 45 |
+
# When the button is clicked, run the correction process asynchronously
|
| 46 |
submit_button.click(fn=correct_grammar_interface, inputs=input_box, outputs=output_box)
|
| 47 |
|
| 48 |
# Launch the app
|