Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from spellchecker import SpellChecker | |
import re | |
from inflect import engine # For pluralization | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Initialize the spell checker and inflect engine | |
spell = SpellChecker() | |
inflect_engine = engine() | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Function to predict AI detection | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Function to get synonyms using NLTK WordNet | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas if lemma.name() != word] # Avoid original word | |
return [] | |
# Function to remove redundant words | |
def remove_redundant_words(text): | |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
return ' '.join(word for word in text.split() if word.lower() not in meaningless_words) | |
# Function to correct spelling errors | |
def correct_spelling(text): | |
words = text.split() | |
corrected_words = [spell.correction(word) for word in words] | |
return ' '.join(corrected_words) | |
# Function to rephrase text with synonyms | |
def rephrase_with_synonyms(text): | |
doc = nlp(text) | |
rephrased_text = [] | |
for token in doc: | |
pos_tag = { | |
"NOUN": wordnet.NOUN, | |
"VERB": wordnet.VERB, | |
"ADJ": wordnet.ADJ, | |
"ADV": wordnet.ADV | |
}.get(token.pos_, None) | |
if pos_tag: | |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag) | |
synonym = synonyms[0] if synonyms else token.text | |
rephrased_text.append(synonym) | |
else: | |
rephrased_text.append(token.text) | |
return ' '.join(rephrased_text) | |
# Function to paraphrase and correct grammar | |
def paraphrase_and_correct(text): | |
cleaned_text = remove_redundant_words(text) | |
cleaned_text = correct_spelling(cleaned_text) | |
return rephrase_with_synonyms(cleaned_text) | |
# Function to handle user input | |
def process_text(input_text): | |
ai_label, ai_score = predict_en(input_text) | |
if ai_label == "HUMAN": | |
corrected_text = paraphrase_and_correct(input_text) | |
return corrected_text | |
else: | |
return "The text seems to be AI-generated; no correction applied." | |
# Gradio interface | |
iface = gr.Interface( | |
fn=process_text, | |
inputs=gr.Textbox(lines=10, placeholder="Enter your text here..."), | |
outputs=gr.Textbox(label="Corrected Text"), | |
title="Text Correction and Rephrasing", | |
description="This app corrects and rephrases text while detecting AI-generated content." | |
) | |
# Launch the interface | |
iface.launch() | |