Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,55 +1,162 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
import spacy
|
| 4 |
import subprocess
|
| 5 |
import nltk
|
| 6 |
from nltk.corpus import wordnet
|
| 7 |
from spellchecker import SpellChecker
|
|
|
|
| 8 |
|
| 9 |
-
# Initialize
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
| 53 |
-
ginger_button.click(fn=correct_with_ginger, inputs=t2, outputs=result2)
|
| 54 |
-
|
| 55 |
-
demo.launch(share=True)
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import spacy
|
| 4 |
import subprocess
|
| 5 |
import nltk
|
| 6 |
from nltk.corpus import wordnet
|
| 7 |
from spellchecker import SpellChecker
|
| 8 |
+
from ginger import get_ginger_result # Importing the grammar correction function
|
| 9 |
|
| 10 |
+
# Initialize the English text classification pipeline for AI detection
|
| 11 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 12 |
|
| 13 |
+
# Initialize the spell checker
|
| 14 |
+
spell = SpellChecker()
|
| 15 |
+
|
| 16 |
+
# Ensure necessary NLTK data is downloaded
|
| 17 |
+
nltk.download('wordnet')
|
| 18 |
+
nltk.download('omw-1.4')
|
| 19 |
+
|
| 20 |
+
# Ensure the SpaCy model is installed
|
| 21 |
+
try:
|
| 22 |
+
nlp = spacy.load("en_core_web_sm")
|
| 23 |
+
except OSError:
|
| 24 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 25 |
+
nlp = spacy.load("en_core_web_sm")
|
| 26 |
+
|
| 27 |
+
# Function to predict the label and score for English text (AI Detection)
|
| 28 |
+
def predict_en(text):
|
| 29 |
+
res = pipeline_en(text)[0]
|
| 30 |
+
return res['label'], res['score']
|
| 31 |
+
|
| 32 |
+
# Function to get synonyms using NLTK WordNet
|
| 33 |
+
def get_synonyms_nltk(word, pos):
|
| 34 |
+
synsets = wordnet.synsets(word, pos=pos)
|
| 35 |
+
if synsets:
|
| 36 |
+
lemmas = synsets[0].lemmas()
|
| 37 |
+
return [lemma.name() for lemma in lemmas]
|
| 38 |
+
return []
|
| 39 |
+
|
| 40 |
+
# Function to remove redundant and meaningless words
|
| 41 |
+
def remove_redundant_words(text):
|
| 42 |
+
doc = nlp(text)
|
| 43 |
+
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 44 |
+
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 45 |
+
return ' '.join(filtered_text)
|
| 46 |
+
|
| 47 |
+
# Function to capitalize the first letter of sentences and proper nouns
|
| 48 |
+
def capitalize_sentences_and_nouns(text):
|
| 49 |
+
doc = nlp(text)
|
| 50 |
+
corrected_text = []
|
| 51 |
+
|
| 52 |
+
for sent in doc.sents:
|
| 53 |
+
sentence = []
|
| 54 |
+
for token in sent:
|
| 55 |
+
if token.i == sent.start: # First word of the sentence
|
| 56 |
+
sentence.append(token.text.capitalize())
|
| 57 |
+
elif token.pos_ == "PROPN": # Proper noun
|
| 58 |
+
sentence.append(token.text.capitalize())
|
| 59 |
+
else:
|
| 60 |
+
sentence.append(token.text)
|
| 61 |
+
corrected_text.append(' '.join(sentence))
|
| 62 |
+
|
| 63 |
+
return ' '.join(corrected_text)
|
| 64 |
+
|
| 65 |
+
# Function to force capitalization of the first letter of every sentence
|
| 66 |
+
def force_first_letter_capital(text):
|
| 67 |
+
sentences = text.split(". ") # Split by period to get each sentence
|
| 68 |
+
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
| 69 |
+
return ". ".join(capitalized_sentences)
|
| 70 |
+
|
| 71 |
+
# Function to correct tense errors in a sentence
|
| 72 |
+
def correct_tense_errors(text):
|
| 73 |
+
doc = nlp(text)
|
| 74 |
+
corrected_text = []
|
| 75 |
+
for token in doc:
|
| 76 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
| 77 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
| 78 |
+
corrected_text.append(lemma)
|
| 79 |
+
else:
|
| 80 |
+
corrected_text.append(token.text)
|
| 81 |
+
return ' '.join(corrected_text)
|
| 82 |
+
|
| 83 |
+
# Function to correct singular/plural errors
|
| 84 |
+
def correct_singular_plural_errors(text):
|
| 85 |
+
doc = nlp(text)
|
| 86 |
+
corrected_text = []
|
| 87 |
|
| 88 |
+
for token in doc:
|
| 89 |
+
if token.pos_ == "NOUN":
|
| 90 |
+
if token.tag_ == "NN": # Singular noun
|
| 91 |
+
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 92 |
+
corrected_text.append(token.lemma_ + 's')
|
| 93 |
+
else:
|
| 94 |
+
corrected_text.append(token.text)
|
| 95 |
+
elif token.tag_ == "NNS": # Plural noun
|
| 96 |
+
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 97 |
+
corrected_text.append(token.lemma_)
|
| 98 |
+
else:
|
| 99 |
+
corrected_text.append(token.text)
|
| 100 |
+
else:
|
| 101 |
+
corrected_text.append(token.text)
|
| 102 |
+
|
| 103 |
+
return ' '.join(corrected_text)
|
| 104 |
+
|
| 105 |
+
# Function to check and correct article errors
|
| 106 |
+
def correct_article_errors(text):
|
| 107 |
+
doc = nlp(text)
|
| 108 |
+
corrected_text = []
|
| 109 |
+
for token in doc:
|
| 110 |
+
if token.text in ['a', 'an']:
|
| 111 |
+
next_token = token.nbor(1)
|
| 112 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
| 113 |
+
corrected_text.append("an")
|
| 114 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
| 115 |
+
corrected_text.append("a")
|
| 116 |
+
else:
|
| 117 |
+
corrected_text.append(token.text)
|
| 118 |
+
else:
|
| 119 |
+
corrected_text.append(token.text)
|
| 120 |
+
return ' '.join(corrected_text)
|
| 121 |
+
|
| 122 |
+
# Function to get the correct synonym while maintaining verb form
|
| 123 |
+
def replace_with_synonym(token):
|
| 124 |
+
pos = None
|
| 125 |
+
if token.pos_ == "VERB":
|
| 126 |
+
pos = wordnet.VERB
|
| 127 |
+
elif token.pos_ == "NOUN":
|
| 128 |
+
pos = wordnet.NOUN
|
| 129 |
+
elif token.pos_ == "ADJ":
|
| 130 |
+
pos = wordnet.ADJ
|
| 131 |
+
elif token.pos_ == "ADV":
|
| 132 |
+
pos = wordnet.ADV
|
| 133 |
|
| 134 |
+
synonyms = get_synonyms_nltk(token.text, pos)
|
| 135 |
+
if synonyms:
|
| 136 |
+
return synonyms[0]
|
| 137 |
+
return token.text
|
| 138 |
+
|
| 139 |
+
# Function to use Ginger API for grammar correction (NEW)
|
| 140 |
+
def correct_grammar_with_ginger(text):
|
| 141 |
+
result = get_ginger_result(text)
|
| 142 |
+
corrected_text = text
|
| 143 |
+
for suggestion in result["LightGingerTheTextResult"]:
|
| 144 |
+
if suggestion["Suggestions"]:
|
| 145 |
+
from_index = suggestion["From"]
|
| 146 |
+
to_index = suggestion["To"] + 1
|
| 147 |
+
suggested_text = suggestion["Suggestions"][0]["Text"]
|
| 148 |
+
corrected_text = corrected_text[:from_index] + suggested_text + corrected_text[to_index:]
|
| 149 |
+
return corrected_text
|
| 150 |
+
|
| 151 |
+
# Gradio interface
|
| 152 |
+
def process_text(text):
|
| 153 |
+
text = correct_article_errors(text)
|
| 154 |
+
text = correct_singular_plural_errors(text)
|
| 155 |
+
text = correct_tense_errors(text)
|
| 156 |
+
text = capitalize_sentences_and_nouns(text)
|
| 157 |
+
text = remove_redundant_words(text)
|
| 158 |
+
text = correct_grammar_with_ginger(text) # Add grammar correction using Ginger here
|
| 159 |
+
return text
|
| 160 |
+
|
| 161 |
+
iface = gr.Interface(fn=process_text, inputs="text", outputs="text")
|
| 162 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|