Spaces:
Running
Running
File size: 3,340 Bytes
b0503ee 84669bc b7577da 7feda08 51568dc 7fc55d1 6d0ac04 f036c05 7fc55d1 51568dc 6ba2176 f036c05 6ba2176 c163eb2 6ba2176 7feda08 f036c05 463d2eb f036c05 9e251df e5063d8 d35a2d1 e5063d8 d35a2d1 e5063d8 d35a2d1 e5063d8 d35a2d1 e5063d8 d35a2d1 e5063d8 d35a2d1 e5063d8 f036c05 e5063d8 e6cd790 e5063d8 463d2eb d2a1a53 e5063d8 f036c05 463d2eb f036c05 e5063d8 a4c0f0e c163eb2 51568dc d35a2d1 51568dc d35a2d1 51568dc d35a2d1 73bd89d 51568dc aed9390 a4c0f0e f036c05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
# Map SpaCy POS tags to WordNet POS tags
pos = None
if token.pos_ in {"NOUN"}:
pos = wordnet.NOUN
elif token.pos_ in {"VERB"}:
pos = wordnet.VERB
elif token.pos_ in {"ADJ"}:
pos = wordnet.ADJ
elif token.pos_ in {"ADV"}:
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it makes sense
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
# Join the words back into a sentence
paraphrased_sentence = ' '.join(paraphrased_words)
return paraphrased_sentence
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Additional steps (grammar correction, capitalization) can go here...
# For now, we'll return the paraphrased text as an example.
return paraphrased_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app with the remaining functionalities
demo.launch()
|