Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| from transformers import pipeline | |
| import spacy | |
| import subprocess | |
| import nltk | |
| from nltk.corpus import wordnet | |
| from gector.gec_model import GecBERTModel | |
| # Initialize the English text classification pipeline for AI detection | |
| pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
| # Function to predict the label and score for English text (AI Detection) | |
| def predict_en(text): | |
| res = pipeline_en(text)[0] | |
| return res['label'], res['score'] | |
| # Ensure necessary NLTK data is downloaded for Humanifier | |
| nltk.download('wordnet') | |
| nltk.download('omw-1.4') | |
| # Ensure the SpaCy model is installed for Humanifier | |
| try: | |
| nlp = spacy.load("en_core_web_sm") | |
| except OSError: | |
| subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
| nlp = spacy.load("en_core_web_sm") | |
| # Initialize GECToR model for grammar correction | |
| gector_model = GecBERTModel(vocab_path='data/output_vocabulary', | |
| model_paths=['https://grammarly-nlp-data.s3.amazonaws.com/gector/roberta_1_gector.th'], | |
| is_ensemble=False) | |
| # Function to correct grammar using GECToR | |
| def correct_grammar_with_gector(text): | |
| corrected_sentences = [] | |
| sentences = [text] # If you want to split into sentences, you can implement that here | |
| for sentence in sentences: | |
| preds = gector_model.handle_batch([sentence]) | |
| corrected_sentences.append(preds[0]) | |
| return ' '.join(corrected_sentences) | |
| # Function to get synonyms using NLTK WordNet (Humanifier) | |
| def get_synonyms_nltk(word, pos): | |
| synsets = wordnet.synsets(word, pos=pos) | |
| if synsets: | |
| lemmas = synsets[0].lemmas() | |
| return [lemma.name() for lemma in lemmas] | |
| return [] | |
| # Function to capitalize the first letter of sentences and proper nouns (Humanifier) | |
| def capitalize_sentences_and_nouns(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for sent in doc.sents: | |
| sentence = [] | |
| for token in sent: | |
| if token.i == sent.start: # First word of the sentence | |
| sentence.append(token.text.capitalize()) | |
| elif token.pos_ == "PROPN": # Proper noun | |
| sentence.append(token.text.capitalize()) | |
| else: | |
| sentence.append(token.text) | |
| corrected_text.append(' '.join(sentence)) | |
| return ' '.join(corrected_text) | |
| # Paraphrasing function using SpaCy and NLTK (Humanifier) | |
| def paraphrase_with_spacy_nltk(text): | |
| doc = nlp(text) | |
| paraphrased_words = [] | |
| for token in doc: | |
| # Map SpaCy POS tags to WordNet POS tags | |
| pos = None | |
| if token.pos_ in {"NOUN"}: | |
| pos = wordnet.NOUN | |
| elif token.pos_ in {"VERB"}: | |
| pos = wordnet.VERB | |
| elif token.pos_ in {"ADJ"}: | |
| pos = wordnet.ADJ | |
| elif token.pos_ in {"ADV"}: | |
| pos = wordnet.ADV | |
| synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] | |
| # Replace with a synonym only if it makes sense | |
| if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): | |
| paraphrased_words.append(synonyms[0]) | |
| else: | |
| paraphrased_words.append(token.text) | |
| # Join the words back into a sentence | |
| paraphrased_sentence = ' '.join(paraphrased_words) | |
| # Capitalize sentences and proper nouns | |
| corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence) | |
| return corrected_text | |
| # Combined function: Paraphrase -> Capitalization (Humanifier) | |
| def paraphrase_and_correct(text): | |
| # Step 1: Paraphrase the text | |
| paraphrased_text = paraphrase_with_spacy_nltk(text) | |
| # Step 2: Capitalize sentences and proper nouns | |
| final_text = capitalize_sentences_and_nouns(paraphrased_text) | |
| return final_text | |
| # Gradio app setup with three tabs | |
| with gr.Blocks() as demo: | |
| with gr.Tab("AI Detection"): | |
| t1 = gr.Textbox(lines=5, label='Text') | |
| button1 = gr.Button("🤖 Predict!") | |
| label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') | |
| score1 = gr.Textbox(lines=1, label='Prob') | |
| # Connect the prediction function to the button | |
| button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en') | |
| with gr.Tab("Humanifier"): | |
| text_input = gr.Textbox(lines=5, label="Input Text") | |
| paraphrase_button = gr.Button("Paraphrase & Correct") | |
| output_text = gr.Textbox(label="Paraphrased Text") | |
| # Connect the paraphrasing function to the button | |
| paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) | |
| with gr.Tab("Grammar Correction"): | |
| grammar_input = gr.Textbox(lines=5, label="Input Text") | |
| grammar_button = gr.Button("Correct Grammar") | |
| grammar_output = gr.Textbox(label="Corrected Text") | |
| # Connect the GECToR grammar correction function to the button | |
| grammar_button.click(correct_grammar_with_gector, inputs=grammar_input, outputs=grammar_output) | |
| # Launch the app with all functionalities | |
| demo.launch() | |