sathvikk commited on
Commit
4b06e1e
Β·
verified Β·
1 Parent(s): d997ea0

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +139 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,141 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import fitz # PyMuPDF for PDF extraction
3
+ from transformers import pipeline
4
 
5
+ # Set page config
6
+ st.set_page_config(page_title="PrepPal", page_icon="πŸ“˜", layout="wide")
7
+
8
+ # Load summarizer model (using Hugging Face pipeline)
9
+ @st.cache_resource
10
+ import streamlit as st
11
+ import fitz # PyMuPDF for PDF extraction
12
+ from transformers import pipeline
13
+
14
+ # Set page config
15
+ st.set_page_config(page_title="PrepPal", page_icon="πŸ“˜", layout="wide")
16
+
17
+ # Load summarizer model (using Hugging Face pipeline)
18
+ @st.cache_resource
19
+ def load_summarizer():
20
+ return pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
21
+
22
+
23
+ # PDF text extraction
24
+ def extract_text_from_pdf(uploaded_file):
25
+ text = ""
26
+ try:
27
+ with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
28
+ for page in doc:
29
+ text += page.get_text()
30
+ except Exception as e:
31
+ st.error(f"Error extracting text from PDF: {e}")
32
+ return text
33
+
34
+ # Summarize text in chunks
35
+ def summarize_text(text, summarizer, max_chunk_length=2000):
36
+ chunks = [text[i:i + max_chunk_length] for i in range(0, len(text), max_chunk_length)]
37
+ summary = ""
38
+ for chunk in chunks:
39
+ result = summarizer(chunk, max_length=130, min_length=30, do_sample=False) # Corrected 'false' to 'False'
40
+ summary += result[0]['summary_text'] + "\n"
41
+ return summary.strip()
42
+
43
+ # Load summarizer model
44
+ summarizer = load_summarizer()
45
+
46
+ # Tabs
47
+ tab1, tab2, tab3 = st.tabs(["πŸ“„ Summarize Notes", "❓ Ask a Doubt", "πŸ’¬ Feedback"])
48
+
49
+ # Tab 1: Summarizer
50
+ with tab1:
51
+ st.header("πŸ“„ Upload Notes & Get Summary")
52
+ st.write("Upload your class notes in PDF format to receive a summarized version.")
53
+ uploaded_pdf = st.file_uploader("Upload your PDF notes (PDF only)", type=["pdf"])
54
+
55
+ if uploaded_pdf:
56
+ with st.spinner("Extracting text from PDF..."):
57
+ pdf_text = extract_text_from_pdf(uploaded_pdf)
58
+
59
+ if pdf_text.strip():
60
+ st.subheader("πŸ“˜ Extracted Text (Preview)")
61
+ st.text_area("Raw Text", pdf_text[:1000] + "...", height=200)
62
+
63
+ if st.button("βœ‚οΈ Summarize"):
64
+ with st.spinner("Summarizing... Please wait."):
65
+ summary = summarize_text(pdf_text, summarizer)
66
+ st.subheader("βœ… Summary")
67
+ st.text_area("Summary Output", summary, height=300)
68
+
69
+ st.download_button("⬇️ Download Summary", summary, file_name="summary.txt")
70
+ else:
71
+ st.warning("⚠️ No text found in the uploaded PDF.")
72
+
73
+ # Tab 2: Ask a Doubt (coming soon)
74
+ with tab2:
75
+ st.header("❓ Ask a Doubt")
76
+ st.info("πŸ”§ This feature is under development. You’ll soon be able to chat with your notes using AI!")
77
+
78
+ # Tab 3: Feedback (coming soon)
79
+ with tab3:
80
+ st.header("πŸ’¬ User Feedback")
81
+ st.info("πŸ“¬ A feedback form will be added here to collect your thoughts and improve PrepPal.")
82
+
83
+ # PDF text extraction
84
+ def extract_text_from_pdf(uploaded_file):
85
+ text = ""
86
+ try:
87
+ with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
88
+ for page in doc:
89
+ text += page.get_text()
90
+ except Exception as e:
91
+ st.error(f"Error extracting text from PDF: {e}")
92
+ return text
93
+
94
+ # Summarize text in chunks
95
+ def summarize_text(text, summarizer, max_chunk_length=2000):
96
+ chunks = [text[i:i + max_chunk_length] for i in range(0, len(text), max_chunk_length)]
97
+ summary = ""
98
+ for chunk in chunks:
99
+ result = summarizer(chunk, max_length=130, min_length=30, do_sample=False) # Corrected 'false' to 'False'
100
+ summary += result[0]['summary_text'] + "\n"
101
+ return summary.strip()
102
+
103
+ # Load summarizer model
104
+ summarizer = load_summarizer()
105
+
106
+ # Tabs
107
+ tab1, tab2, tab3 = st.tabs(["πŸ“„ Summarize Notes", "❓ Ask a Doubt", "πŸ’¬ Feedback"])
108
+
109
+ # Tab 1: Summarizer
110
+ with tab1:
111
+ st.header("πŸ“„ Upload Notes & Get Summary")
112
+ st.write("Upload your class notes in PDF format to receive a summarized version.")
113
+ uploaded_pdf = st.file_uploader("Upload your PDF notes (PDF only)", type=["pdf"])
114
+
115
+ if uploaded_pdf:
116
+ with st.spinner("Extracting text from PDF..."):
117
+ pdf_text = extract_text_from_pdf(uploaded_pdf)
118
+
119
+ if pdf_text.strip():
120
+ st.subheader("πŸ“˜ Extracted Text (Preview)")
121
+ st.text_area("Raw Text", pdf_text[:1000] + "...", height=200)
122
+
123
+ if st.button("βœ‚οΈ Summarize"):
124
+ with st.spinner("Summarizing... Please wait."):
125
+ summary = summarize_text(pdf_text, summarizer)
126
+ st.subheader("βœ… Summary")
127
+ st.text_area("Summary Output", summary, height=300)
128
+
129
+ st.download_button("⬇️ Download Summary", summary, file_name="summary.txt")
130
+ else:
131
+ st.warning("⚠️ No text found in the uploaded PDF.")
132
+
133
+ # Tab 2: Ask a Doubt (coming soon)
134
+ with tab2:
135
+ st.header("❓ Ask a Doubt")
136
+ st.info("πŸ”§ This feature is under development. You’ll soon be able to chat with your notes using AI!")
137
+
138
+ # Tab 3: Feedback (coming soon)
139
+ with tab3:
140
+ st.header("πŸ’¬ User Feedback")
141
+ st.info("πŸ“¬ A feedback form will be added here to collect your thoughts and improve PrepPal.")