Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +55 -29
src/streamlit_app.py
CHANGED
@@ -13,21 +13,19 @@ st.set_page_config(
|
|
13 |
layout="wide"
|
14 |
)
|
15 |
|
16 |
-
#
|
17 |
-
st.
|
18 |
-
<meta http-equiv="Content-Security-Policy" content="default-src 'self'; script-src 'self' 'unsafe-inline'">
|
19 |
-
""", unsafe_allow_html=True)
|
20 |
-
|
21 |
-
@st.cache_resource
|
22 |
def load_model():
|
23 |
try:
|
|
|
24 |
return pipeline(
|
25 |
"summarization",
|
26 |
-
model="
|
27 |
-
device=-1 #
|
28 |
)
|
29 |
except Exception as e:
|
30 |
-
st.error(f"
|
|
|
31 |
return None
|
32 |
|
33 |
def process_pdf(uploaded_file):
|
@@ -42,19 +40,38 @@ def process_pdf(uploaded_file):
|
|
42 |
os.unlink(tmp_path)
|
43 |
return text.strip()
|
44 |
except Exception as e:
|
45 |
-
st.error(f"
|
46 |
return ""
|
47 |
|
48 |
def generate_summary(text, model):
|
49 |
-
if not text
|
|
|
|
|
|
|
|
|
|
|
50 |
return ""
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def main():
|
60 |
st.title("π PrepPal - Study Assistant")
|
@@ -64,34 +81,43 @@ def main():
|
|
64 |
with tab1:
|
65 |
st.header("PDF Summarizer")
|
66 |
uploaded_file = st.file_uploader(
|
67 |
-
"Upload PDF (max
|
68 |
type=["pdf"],
|
69 |
accept_multiple_files=False
|
70 |
)
|
71 |
|
72 |
if uploaded_file:
|
73 |
-
if uploaded_file.size >
|
74 |
-
st.error("File too large (max
|
75 |
else:
|
76 |
-
with st.spinner("
|
77 |
text = process_pdf(uploaded_file)
|
78 |
|
79 |
if text:
|
80 |
with st.expander("View extracted text"):
|
81 |
-
st.text(text[:
|
82 |
|
83 |
if st.button("Generate Summary"):
|
84 |
-
with st.spinner("
|
85 |
model = load_model()
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
st.write(summary)
|
90 |
st.download_button(
|
91 |
-
"Download Summary",
|
92 |
data=summary,
|
93 |
-
file_name="summary.txt"
|
|
|
94 |
)
|
|
|
|
|
|
|
|
|
95 |
|
96 |
with tab2:
|
97 |
st.header("Ask a Question")
|
@@ -100,7 +126,7 @@ def main():
|
|
100 |
with tab3:
|
101 |
st.header("Feedback")
|
102 |
feedback = st.text_area("Your suggestions")
|
103 |
-
if st.button("Submit"):
|
104 |
st.success("Thank you for your feedback!")
|
105 |
|
106 |
if __name__ == "__main__":
|
|
|
13 |
layout="wide"
|
14 |
)
|
15 |
|
16 |
+
# Load model with better error handling
|
17 |
+
@st.cache_resource(show_spinner=False)
|
|
|
|
|
|
|
|
|
18 |
def load_model():
|
19 |
try:
|
20 |
+
# Using a smaller, more reliable model
|
21 |
return pipeline(
|
22 |
"summarization",
|
23 |
+
model="facebook/bart-large-cnn",
|
24 |
+
device=-1 # Force CPU
|
25 |
)
|
26 |
except Exception as e:
|
27 |
+
st.error(f"β Model loading failed: {str(e)}")
|
28 |
+
st.error("Please try again later or contact support")
|
29 |
return None
|
30 |
|
31 |
def process_pdf(uploaded_file):
|
|
|
40 |
os.unlink(tmp_path)
|
41 |
return text.strip()
|
42 |
except Exception as e:
|
43 |
+
st.error(f"β PDF processing error: {str(e)}")
|
44 |
return ""
|
45 |
|
46 |
def generate_summary(text, model):
|
47 |
+
if not text:
|
48 |
+
st.error("No text extracted from PDF")
|
49 |
+
return ""
|
50 |
+
|
51 |
+
if not model:
|
52 |
+
st.error("AI model not loaded")
|
53 |
return ""
|
54 |
|
55 |
+
try:
|
56 |
+
# More efficient chunking
|
57 |
+
chunks = [text[i:i+1024] for i in range(0, len(text), 1024)]
|
58 |
+
summaries = []
|
59 |
+
|
60 |
+
progress_bar = st.progress(0)
|
61 |
+
for i, chunk in enumerate(chunks):
|
62 |
+
progress_bar.progress((i + 1) / len(chunks))
|
63 |
+
result = model(
|
64 |
+
chunk,
|
65 |
+
max_length=150,
|
66 |
+
min_length=30,
|
67 |
+
do_sample=False
|
68 |
+
)
|
69 |
+
summaries.append(result[0]['summary_text'])
|
70 |
+
|
71 |
+
return " ".join(summaries)
|
72 |
+
except Exception as e:
|
73 |
+
st.error(f"β Summarization failed: {str(e)}")
|
74 |
+
return ""
|
75 |
|
76 |
def main():
|
77 |
st.title("π PrepPal - Study Assistant")
|
|
|
81 |
with tab1:
|
82 |
st.header("PDF Summarizer")
|
83 |
uploaded_file = st.file_uploader(
|
84 |
+
"Upload PDF (max 10MB)",
|
85 |
type=["pdf"],
|
86 |
accept_multiple_files=False
|
87 |
)
|
88 |
|
89 |
if uploaded_file:
|
90 |
+
if uploaded_file.size > 10_000_000:
|
91 |
+
st.error("File too large (max 10MB)")
|
92 |
else:
|
93 |
+
with st.spinner("Extracting text from PDF..."):
|
94 |
text = process_pdf(uploaded_file)
|
95 |
|
96 |
if text:
|
97 |
with st.expander("View extracted text"):
|
98 |
+
st.text(text[:1000] + "...")
|
99 |
|
100 |
if st.button("Generate Summary"):
|
101 |
+
with st.spinner("Loading AI model..."):
|
102 |
model = load_model()
|
103 |
+
|
104 |
+
if model:
|
105 |
+
st.info("Generating summary... This may take a minute")
|
106 |
+
summary = generate_summary(text, model)
|
107 |
+
|
108 |
+
if summary:
|
109 |
+
st.subheader("β
Summary")
|
110 |
st.write(summary)
|
111 |
st.download_button(
|
112 |
+
"β¬οΈ Download Summary",
|
113 |
data=summary,
|
114 |
+
file_name="summary.txt",
|
115 |
+
mime="text/plain"
|
116 |
)
|
117 |
+
else:
|
118 |
+
st.warning("No summary was generated")
|
119 |
+
else:
|
120 |
+
st.error("Could not load AI model")
|
121 |
|
122 |
with tab2:
|
123 |
st.header("Ask a Question")
|
|
|
126 |
with tab3:
|
127 |
st.header("Feedback")
|
128 |
feedback = st.text_area("Your suggestions")
|
129 |
+
if st.button("Submit Feedback"):
|
130 |
st.success("Thank you for your feedback!")
|
131 |
|
132 |
if __name__ == "__main__":
|