Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +89 -40
src/streamlit_app.py
CHANGED
@@ -1,71 +1,120 @@
|
|
1 |
import os
|
2 |
-
os.environ["TRANSFORMERS_CACHE"] = "/
|
3 |
|
4 |
import streamlit as st
|
5 |
import fitz # PyMuPDF
|
6 |
from transformers import pipeline
|
7 |
|
8 |
# Set page config
|
9 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# Load summarizer model
|
12 |
@st.cache_resource
|
13 |
def load_summarizer():
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
# Extract text from
|
18 |
def extract_text_from_pdf(uploaded_file):
|
19 |
text = ""
|
20 |
try:
|
|
|
|
|
|
|
|
|
|
|
21 |
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
22 |
for page in doc:
|
23 |
text += page.get_text()
|
|
|
24 |
except Exception as e:
|
25 |
-
st.error(f"β Error extracting text
|
26 |
-
|
27 |
|
28 |
-
# Summarize
|
29 |
-
def summarize_text(text, summarizer,
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Load model
|
38 |
summarizer = load_summarizer()
|
39 |
|
40 |
-
# UI
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
with tab1:
|
44 |
-
st.header("
|
45 |
-
st.
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
if
|
49 |
-
with st.spinner("Extracting text
|
50 |
-
|
51 |
|
52 |
-
if
|
53 |
-
st.subheader("
|
54 |
-
st.text_area("
|
55 |
|
56 |
-
if st.button("
|
57 |
-
with st.spinner("Summarizing...
|
58 |
-
summary = summarize_text(
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
with tab2:
|
66 |
-
st.header("
|
67 |
-
st.
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
1 |
import os
|
2 |
+
os.environ["TRANSFORMERS_CACHE"] = "/cache" # Special directory in Spaces
|
3 |
|
4 |
import streamlit as st
|
5 |
import fitz # PyMuPDF
|
6 |
from transformers import pipeline
|
7 |
|
8 |
# Set page config
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="PrepPal",
|
11 |
+
page_icon="π",
|
12 |
+
layout="wide",
|
13 |
+
menu_items={
|
14 |
+
'About': "PrepPal - AI-powered study assistant"
|
15 |
+
}
|
16 |
+
)
|
17 |
|
18 |
+
# Load summarizer model (using a smaller, faster model)
|
19 |
@st.cache_resource
|
20 |
def load_summarizer():
|
21 |
+
try:
|
22 |
+
return pipeline(
|
23 |
+
"summarization",
|
24 |
+
model="Falconsai/text_summarization", # Smaller model
|
25 |
+
device=-1 # Use CPU (more reliable in Spaces)
|
26 |
+
)
|
27 |
+
except Exception as e:
|
28 |
+
st.error(f"β Failed to load model: {str(e)}")
|
29 |
+
return None
|
30 |
|
31 |
+
# Extract text from PDF with size limit
|
32 |
def extract_text_from_pdf(uploaded_file):
|
33 |
text = ""
|
34 |
try:
|
35 |
+
# Check file size (max 5MB)
|
36 |
+
if uploaded_file.size > 5_000_000:
|
37 |
+
st.error("File too large (max 5MB)")
|
38 |
+
return ""
|
39 |
+
|
40 |
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
41 |
for page in doc:
|
42 |
text += page.get_text()
|
43 |
+
return text.strip()
|
44 |
except Exception as e:
|
45 |
+
st.error(f"β Error extracting text: {str(e)}")
|
46 |
+
return ""
|
47 |
|
48 |
+
# Summarize text in chunks
|
49 |
+
def summarize_text(text, summarizer, max_chunk=1024):
|
50 |
+
if not text:
|
51 |
+
return ""
|
52 |
+
|
53 |
+
try:
|
54 |
+
chunks = [text[i:i+max_chunk] for i in range(0, len(text), max_chunk)]
|
55 |
+
summary = ""
|
56 |
+
for chunk in chunks:
|
57 |
+
result = summarizer(
|
58 |
+
chunk,
|
59 |
+
max_length=150,
|
60 |
+
min_length=30,
|
61 |
+
do_sample=False
|
62 |
+
)
|
63 |
+
summary += result[0]['summary_text'] + " "
|
64 |
+
return summary.strip()
|
65 |
+
except Exception as e:
|
66 |
+
st.error(f"β Summarization failed: {str(e)}")
|
67 |
+
return ""
|
68 |
|
69 |
# Load model
|
70 |
summarizer = load_summarizer()
|
71 |
|
72 |
+
# UI Layout
|
73 |
+
st.title("π PrepPal - Study Assistant")
|
74 |
+
st.markdown("Upload your notes and get an AI-powered summary")
|
75 |
+
|
76 |
+
tab1, tab2 = st.tabs(["π Summarize Notes", "π¬ Feedback"])
|
77 |
|
78 |
with tab1:
|
79 |
+
st.header("PDF Summarizer")
|
80 |
+
uploaded_file = st.file_uploader(
|
81 |
+
"Choose a PDF file (max 5MB)",
|
82 |
+
type=["pdf"],
|
83 |
+
accept_multiple_files=False
|
84 |
+
)
|
85 |
|
86 |
+
if uploaded_file and summarizer:
|
87 |
+
with st.spinner("Extracting text..."):
|
88 |
+
text = extract_text_from_pdf(uploaded_file)
|
89 |
|
90 |
+
if text:
|
91 |
+
st.subheader("Extracted Text Preview")
|
92 |
+
st.text_area("", text[:500] + "...", height=150, disabled=True)
|
93 |
|
94 |
+
if st.button("Generate Summary"):
|
95 |
+
with st.spinner("Summarizing..."):
|
96 |
+
summary = summarize_text(text, summarizer)
|
97 |
+
|
98 |
+
if summary:
|
99 |
+
st.subheader("AI Summary")
|
100 |
+
st.write(summary)
|
101 |
+
|
102 |
+
st.download_button(
|
103 |
+
"Download Summary",
|
104 |
+
data=summary,
|
105 |
+
file_name="summary.txt",
|
106 |
+
mime="text/plain"
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
st.warning("No summary generated")
|
110 |
|
111 |
with tab2:
|
112 |
+
st.header("Feedback")
|
113 |
+
st.write("We'd love to hear your thoughts!")
|
114 |
+
feedback = st.text_area("Your feedback")
|
115 |
+
if st.button("Submit Feedback"):
|
116 |
+
st.success("Thank you! Your feedback has been recorded.")
|
117 |
|
118 |
+
# Add footer
|
119 |
+
st.markdown("---")
|
120 |
+
st.caption("PrepPal v1.0 | AI-powered study assistant")
|