Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +4 -11
src/streamlit_app.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
import streamlit as st
|
2 |
-
import fitz
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Set page config
|
6 |
st.set_page_config(page_title="PrepPal", page_icon="π", layout="wide")
|
7 |
|
8 |
-
# Load summarizer model
|
9 |
@st.cache_resource
|
10 |
def load_summarizer():
|
11 |
return pipeline("summarization", model="t5-small")
|
12 |
|
13 |
-
|
14 |
# PDF text extraction
|
15 |
def extract_text_from_pdf(uploaded_file):
|
16 |
text = ""
|
@@ -27,17 +26,14 @@ def summarize_text(text, summarizer, max_chunk_length=2000):
|
|
27 |
chunks = [text[i:i + max_chunk_length] for i in range(0, len(text), max_chunk_length)]
|
28 |
summary = ""
|
29 |
for chunk in chunks:
|
30 |
-
result = summarizer(chunk, max_length=130, min_length=30, do_sample=False)
|
31 |
summary += result[0]['summary_text'] + "\n"
|
32 |
return summary.strip()
|
33 |
|
34 |
-
# Load summarizer model
|
35 |
summarizer = load_summarizer()
|
36 |
|
37 |
-
# Tabs
|
38 |
tab1, tab2, tab3 = st.tabs(["π Summarize Notes", "β Ask a Doubt", "π¬ Feedback"])
|
39 |
|
40 |
-
# Tab 1: Summarizer
|
41 |
with tab1:
|
42 |
st.header("π Upload Notes & Get Summary")
|
43 |
st.write("Upload your class notes in PDF format to receive a summarized version.")
|
@@ -56,17 +52,14 @@ with tab1:
|
|
56 |
summary = summarize_text(pdf_text, summarizer)
|
57 |
st.subheader("β
Summary")
|
58 |
st.text_area("Summary Output", summary, height=300)
|
59 |
-
|
60 |
st.download_button("β¬οΈ Download Summary", summary, file_name="summary.txt")
|
61 |
else:
|
62 |
st.warning("β οΈ No text found in the uploaded PDF.")
|
63 |
|
64 |
-
# Tab 2: Ask a Doubt (coming soon)
|
65 |
with tab2:
|
66 |
st.header("β Ask a Doubt")
|
67 |
st.info("π§ This feature is under development. Youβll soon be able to chat with your notes using AI!")
|
68 |
|
69 |
-
# Tab 3: Feedback (coming soon)
|
70 |
with tab3:
|
71 |
st.header("π¬ User Feedback")
|
72 |
-
st.info("π¬ A feedback form will be added here to collect your thoughts and improve PrepPal.")
|
|
|
1 |
import streamlit as st
|
2 |
+
import fitz # PyMuPDF for PDF extraction
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Set page config
|
6 |
st.set_page_config(page_title="PrepPal", page_icon="π", layout="wide")
|
7 |
|
8 |
+
# Load summarizer model
|
9 |
@st.cache_resource
|
10 |
def load_summarizer():
|
11 |
return pipeline("summarization", model="t5-small")
|
12 |
|
|
|
13 |
# PDF text extraction
|
14 |
def extract_text_from_pdf(uploaded_file):
|
15 |
text = ""
|
|
|
26 |
chunks = [text[i:i + max_chunk_length] for i in range(0, len(text), max_chunk_length)]
|
27 |
summary = ""
|
28 |
for chunk in chunks:
|
29 |
+
result = summarizer(chunk, max_length=130, min_length=30, do_sample=False)
|
30 |
summary += result[0]['summary_text'] + "\n"
|
31 |
return summary.strip()
|
32 |
|
|
|
33 |
summarizer = load_summarizer()
|
34 |
|
|
|
35 |
tab1, tab2, tab3 = st.tabs(["π Summarize Notes", "β Ask a Doubt", "π¬ Feedback"])
|
36 |
|
|
|
37 |
with tab1:
|
38 |
st.header("π Upload Notes & Get Summary")
|
39 |
st.write("Upload your class notes in PDF format to receive a summarized version.")
|
|
|
52 |
summary = summarize_text(pdf_text, summarizer)
|
53 |
st.subheader("β
Summary")
|
54 |
st.text_area("Summary Output", summary, height=300)
|
|
|
55 |
st.download_button("β¬οΈ Download Summary", summary, file_name="summary.txt")
|
56 |
else:
|
57 |
st.warning("β οΈ No text found in the uploaded PDF.")
|
58 |
|
|
|
59 |
with tab2:
|
60 |
st.header("β Ask a Doubt")
|
61 |
st.info("π§ This feature is under development. Youβll soon be able to chat with your notes using AI!")
|
62 |
|
|
|
63 |
with tab3:
|
64 |
st.header("π¬ User Feedback")
|
65 |
+
st.info("π¬ A feedback form will be added here to collect your thoughts and improve PrepPal.")
|