File size: 5,642 Bytes
c3d6c3e
5dfba26
c3d6c3e
 
 
 
5dfba26
c3d6c3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
""import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
from sentence\_transformers import SentenceTransformer, util
import numpy as np

# ------------------------------

# Offline Quiz Generator

# ------------------------------

model\_qg = T5ForConditionalGeneration.from\_pretrained("t5-base")
tokenizer\_qg = T5Tokenizer.from\_pretrained("t5-base")

def generate\_mcqs(text, num\_questions=3):
input\_text = f"generate questions: {text}"
input\_ids = tokenizer\_qg.encode(input\_text, return\_tensors="pt", max\_length=512, truncation=True)
outputs = model\_qg.generate(input\_ids=input\_ids, max\_length=256, num\_return\_sequences=1)
return tokenizer\_qg.decode(outputs\[0], skip\_special\_tokens=True).strip()

# ------------------------------

# Weakness Analyzer

# ------------------------------

def analyze\_weakness(csv\_file):
df = pd.read\_csv(csv\_file.name)
summary = df.groupby("Topic")\["Score"].mean().sort\_values()
return summary.to\_string()

# ------------------------------

# Teaching Assistant

# ------------------------------

def chatbot\_response(message, history):
return "This is a placeholder response for now. (LLM not integrated)"

# ------------------------------

# Speech Question Solver

# ------------------------------

def speech\_answer(audio):
return "Audio to text transcription + answer generation is not included in offline version."

# ------------------------------

# PDF/YT Summarizer

# ------------------------------

def summarize\_text(text):
input\_text = f"summarize: {text.strip()}"
input\_ids = tokenizer\_qg.encode(input\_text, return\_tensors="pt", max\_length=512, truncation=True)
summary\_ids = model\_qg.generate(input\_ids, max\_length=150, min\_length=30, length\_penalty=5., num\_beams=2)
return tokenizer\_qg.decode(summary\_ids\[0], skip\_special\_tokens=True)

# ------------------------------

# Engagement Predictor (Mock)

# ------------------------------

def predict\_engagement(file):
df = pd.read\_csv(file.name)
avg\_time = df\['TimeSpent'].mean()
if avg\_time < 10:
return "⚠️ Risk of disengagement"
else:
return "βœ… Engaged student"

# ------------------------------

# Badge Generator

# ------------------------------

def generate\_badge(file):
df = pd.read\_csv(file.name)
avg\_score = df\['Score'].mean()
if avg\_score >= 80:
return "πŸ… Gold Badge"
elif avg\_score >= 50:
return "πŸ₯ˆ Silver Badge"
else:
return "πŸ₯‰ Bronze Badge"

# ------------------------------

# Translator (Mock - offline)

# ------------------------------

def translate\_text(text, target\_lang):
return f"(Translated to {target\_lang}) - This is a mock translation."

# ------------------------------

# Plagiarism Checker

# ------------------------------

model\_plag = SentenceTransformer('all-MiniLM-L6-v2')

def check\_plagiarism(text1, text2):
emb1 = model\_plag.encode(text1, convert\_to\_tensor=True)
emb2 = model\_plag.encode(text2, convert\_to\_tensor=True)
score = util.cos\_sim(emb1, emb2).item()
return f"Similarity Score: {score:.2f} - {'⚠️ Possible Plagiarism' if score > 0.8 else 'βœ… Looks Original'}"

# ------------------------------

# Gradio UI

# ------------------------------

with gr.Blocks() as demo:
gr.Markdown("# πŸ“š AI-Powered LMS Suite (Offline Mode)")

```
with gr.Tab("🧠 Quiz Generator"):
    quiz_text = gr.Textbox(label="Content", lines=5)
    quiz_slider = gr.Slider(1, 10, value=3, label="Number of Questions")
    quiz_btn = gr.Button("Generate Quiz")
    quiz_out = gr.Textbox(label="Generated Quiz")
    quiz_btn.click(fn=generate_mcqs, inputs=[quiz_text, quiz_slider], outputs=quiz_out)

with gr.Tab("πŸ“‰ Weakness Analyzer"):
    weak_file = gr.File(label="Upload CSV with Topic & Score columns")
    weak_btn = gr.Button("Analyze")
    weak_out = gr.Textbox(label="Analysis")
    weak_btn.click(fn=analyze_weakness, inputs=weak_file, outputs=weak_out)

with gr.Tab("πŸ€– Teaching Assistant"):
    chat = gr.ChatInterface(fn=chatbot_response)

with gr.Tab("🎀 Speech Q Solver"):
    audio_in = gr.Audio(source="microphone", type="filepath")
    audio_btn = gr.Button("Answer")
    audio_out = gr.Textbox()
    audio_btn.click(fn=speech_answer, inputs=audio_in, outputs=audio_out)

with gr.Tab("πŸ“„ Summarizer"):
    sum_text = gr.Textbox(lines=5, label="Paste Text")
    sum_btn = gr.Button("Summarize")
    sum_out = gr.Textbox(label="Summary")
    sum_btn.click(fn=summarize_text, inputs=sum_text, outputs=sum_out)

with gr.Tab("πŸ“Š Engagement Predictor"):
    eng_file = gr.File(label="Upload CSV with TimeSpent column")
    eng_btn = gr.Button("Predict")
    eng_out = gr.Textbox()
    eng_btn.click(fn=predict_engagement, inputs=eng_file, outputs=eng_out)

with gr.Tab("πŸ… Badge Generator"):
    badge_file = gr.File(label="Upload CSV with Score column")
    badge_btn = gr.Button("Get Badge")
    badge_out = gr.Textbox()
    badge_btn.click(fn=generate_badge, inputs=badge_file, outputs=badge_out)

with gr.Tab("🌍 Translator"):
    trans_in = gr.Textbox(label="Enter Text")
    trans_lang = gr.Textbox(label="Target Language")
    trans_btn = gr.Button("Translate")
    trans_out = gr.Textbox()
    trans_btn.click(fn=translate_text, inputs=[trans_in, trans_lang], outputs=trans_out)

with gr.Tab("πŸ“‹ Plagiarism Checker"):
    text1 = gr.Textbox(label="Text 1", lines=3)
    text2 = gr.Textbox(label="Text 2", lines=3)
    plag_btn = gr.Button("Check Similarity")
    plag_out = gr.Textbox()
    plag_btn.click(fn=check_plagiarism, inputs=[text1, text2], outputs=plag_out)
```

# Launch app

demo.launch()