Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
3 |
|
4 |
# ------------------------------
|
5 |
-
# Load
|
6 |
# ------------------------------
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# ------------------------------
|
12 |
-
#
|
13 |
# ------------------------------
|
14 |
def generate_mcqs(text, num_questions=3):
|
15 |
input_text = f"generate questions: {text.strip()}"
|
16 |
-
input_ids =
|
17 |
|
18 |
-
outputs =
|
19 |
input_ids=input_ids,
|
20 |
max_length=256,
|
21 |
num_return_sequences=num_questions,
|
@@ -24,24 +36,135 @@ def generate_mcqs(text, num_questions=3):
|
|
24 |
top_p=0.95
|
25 |
)
|
26 |
|
27 |
-
questions = [
|
28 |
return "\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)])
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# ------------------------------
|
31 |
# Gradio Interface
|
32 |
# ------------------------------
|
33 |
with gr.Blocks() as demo:
|
34 |
-
gr.Markdown("#
|
35 |
-
|
36 |
-
with gr.
|
37 |
quiz_text = gr.Textbox(label="π Input Content", lines=6, placeholder="Paste a paragraph here...")
|
38 |
-
|
39 |
-
with gr.Row():
|
40 |
quiz_slider = gr.Slider(1, 10, value=3, label="π§Ύ Number of Questions")
|
41 |
quiz_btn = gr.Button("π Generate Quiz")
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5Tokenizer, T5ForConditionalGeneration
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
|
7 |
# ------------------------------
|
8 |
+
# Load Models
|
9 |
# ------------------------------
|
10 |
+
# Fine-tuned quiz generator model
|
11 |
+
quiz_model_name = "iarfmoose/t5-base-question-generator"
|
12 |
+
quiz_tokenizer = AutoTokenizer.from_pretrained(quiz_model_name)
|
13 |
+
quiz_model = AutoModelForSeq2SeqLM.from_pretrained(quiz_model_name)
|
14 |
+
|
15 |
+
# For summarizer and fallback tasks
|
16 |
+
default_model_name = "t5-base"
|
17 |
+
tokenizer_qg = T5Tokenizer.from_pretrained(default_model_name)
|
18 |
+
model_qg = T5ForConditionalGeneration.from_pretrained(default_model_name)
|
19 |
+
|
20 |
+
# For plagiarism detection
|
21 |
+
model_plag = SentenceTransformer('all-MiniLM-L6-v2')
|
22 |
|
23 |
# ------------------------------
|
24 |
+
# Quiz Generator (Fine-Tuned)
|
25 |
# ------------------------------
|
26 |
def generate_mcqs(text, num_questions=3):
|
27 |
input_text = f"generate questions: {text.strip()}"
|
28 |
+
input_ids = quiz_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
29 |
|
30 |
+
outputs = quiz_model.generate(
|
31 |
input_ids=input_ids,
|
32 |
max_length=256,
|
33 |
num_return_sequences=num_questions,
|
|
|
36 |
top_p=0.95
|
37 |
)
|
38 |
|
39 |
+
questions = [quiz_tokenizer.decode(out, skip_special_tokens=True).strip() for out in outputs]
|
40 |
return "\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)])
|
41 |
|
42 |
+
# ------------------------------
|
43 |
+
# Weakness Analyzer
|
44 |
+
# ------------------------------
|
45 |
+
def analyze_weakness(csv_file):
|
46 |
+
df = pd.read_csv(csv_file.name)
|
47 |
+
summary = df.groupby("Topic")["Score"].mean().sort_values()
|
48 |
+
return summary.to_string()
|
49 |
+
|
50 |
+
# ------------------------------
|
51 |
+
# Teaching Assistant (Mock)
|
52 |
+
# ------------------------------
|
53 |
+
def chatbot_response(message, history):
|
54 |
+
return "This is a placeholder response for now. (LLM not integrated)"
|
55 |
+
|
56 |
+
# ------------------------------
|
57 |
+
# Speech Question Solver (Mock)
|
58 |
+
# ------------------------------
|
59 |
+
def speech_answer(audio):
|
60 |
+
return "Audio transcription and answer generation not supported offline."
|
61 |
+
|
62 |
+
# ------------------------------
|
63 |
+
# Summarizer
|
64 |
+
# ------------------------------
|
65 |
+
def summarize_text(text):
|
66 |
+
input_text = f"summarize: {text.strip()}"
|
67 |
+
input_ids = tokenizer_qg.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
68 |
+
summary_ids = model_qg.generate(input_ids, max_length=150, min_length=30, length_penalty=5.0, num_beams=2)
|
69 |
+
return tokenizer_qg.decode(summary_ids[0], skip_special_tokens=True)
|
70 |
+
|
71 |
+
# ------------------------------
|
72 |
+
# Engagement Predictor (Mock)
|
73 |
+
# ------------------------------
|
74 |
+
def predict_engagement(file):
|
75 |
+
df = pd.read_csv(file.name)
|
76 |
+
avg_time = df["TimeSpent"].mean()
|
77 |
+
return "β
Engaged student" if avg_time >= 10 else "β οΈ Risk of disengagement"
|
78 |
+
|
79 |
+
# ------------------------------
|
80 |
+
# Badge Generator
|
81 |
+
# ------------------------------
|
82 |
+
def generate_badge(file):
|
83 |
+
df = pd.read_csv(file.name)
|
84 |
+
avg_score = df["Score"].mean()
|
85 |
+
if avg_score >= 80:
|
86 |
+
return "π
Gold Badge"
|
87 |
+
elif avg_score >= 50:
|
88 |
+
return "π₯ Silver Badge"
|
89 |
+
else:
|
90 |
+
return "π₯ Bronze Badge"
|
91 |
+
|
92 |
+
# ------------------------------
|
93 |
+
# Translator (Mock)
|
94 |
+
# ------------------------------
|
95 |
+
def translate_text(text, target_lang):
|
96 |
+
return f"(Translated to {target_lang}) - This is a mock translation."
|
97 |
+
|
98 |
+
# ------------------------------
|
99 |
+
# Plagiarism Checker
|
100 |
+
# ------------------------------
|
101 |
+
def check_plagiarism(text1, text2):
|
102 |
+
emb1 = model_plag.encode(text1, convert_to_tensor=True)
|
103 |
+
emb2 = model_plag.encode(text2, convert_to_tensor=True)
|
104 |
+
score = util.cos_sim(emb1, emb2).item()
|
105 |
+
return f"Similarity Score: {score:.2f} - {'β οΈ Possible Plagiarism' if score > 0.8 else 'β
Looks Original'}"
|
106 |
+
|
107 |
# ------------------------------
|
108 |
# Gradio Interface
|
109 |
# ------------------------------
|
110 |
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown("# π Smart LMS Suite (AI Powered Offline Tools)")
|
112 |
+
|
113 |
+
with gr.Tab("π§ Quiz Generator"):
|
114 |
quiz_text = gr.Textbox(label="π Input Content", lines=6, placeholder="Paste a paragraph here...")
|
|
|
|
|
115 |
quiz_slider = gr.Slider(1, 10, value=3, label="π§Ύ Number of Questions")
|
116 |
quiz_btn = gr.Button("π Generate Quiz")
|
117 |
+
quiz_output = gr.Textbox(label="π Generated Questions", lines=10)
|
118 |
+
quiz_btn.click(fn=generate_mcqs, inputs=[quiz_text, quiz_slider], outputs=quiz_output)
|
119 |
|
120 |
+
with gr.Tab("π Weakness Analyzer"):
|
121 |
+
weak_file = gr.File(label="Upload CSV with Topic & Score columns")
|
122 |
+
weak_btn = gr.Button("Analyze")
|
123 |
+
weak_out = gr.Textbox(label="Analysis")
|
124 |
+
weak_btn.click(fn=analyze_weakness, inputs=weak_file, outputs=weak_out)
|
125 |
|
126 |
+
with gr.Tab("π€ Teaching Assistant"):
|
127 |
+
gr.ChatInterface(fn=chatbot_response)
|
128 |
|
129 |
+
with gr.Tab("π€ Speech Q Solver"):
|
130 |
+
audio_in = gr.Audio(label="Upload Audio", type="filepath")
|
131 |
+
audio_btn = gr.Button("Get Answer")
|
132 |
+
audio_out = gr.Textbox(label="Answer")
|
133 |
+
audio_btn.click(fn=speech_answer, inputs=audio_in, outputs=audio_out)
|
134 |
+
|
135 |
+
with gr.Tab("π Summarizer"):
|
136 |
+
sum_text = gr.Textbox(lines=5, label="Paste Text")
|
137 |
+
sum_btn = gr.Button("Summarize")
|
138 |
+
sum_out = gr.Textbox(label="Summary")
|
139 |
+
sum_btn.click(fn=summarize_text, inputs=sum_text, outputs=sum_out)
|
140 |
+
|
141 |
+
with gr.Tab("π Engagement Predictor"):
|
142 |
+
eng_file = gr.File(label="Upload CSV with TimeSpent column")
|
143 |
+
eng_btn = gr.Button("Predict")
|
144 |
+
eng_out = gr.Textbox()
|
145 |
+
eng_btn.click(fn=predict_engagement, inputs=eng_file, outputs=eng_out)
|
146 |
+
|
147 |
+
with gr.Tab("π
Badge Generator"):
|
148 |
+
badge_file = gr.File(label="Upload CSV with Score column")
|
149 |
+
badge_btn = gr.Button("Get Badge")
|
150 |
+
badge_out = gr.Textbox()
|
151 |
+
badge_btn.click(fn=generate_badge, inputs=badge_file, outputs=badge_out)
|
152 |
+
|
153 |
+
with gr.Tab("π Translator"):
|
154 |
+
trans_in = gr.Textbox(label="Enter Text")
|
155 |
+
trans_lang = gr.Textbox(label="Target Language")
|
156 |
+
trans_btn = gr.Button("Translate")
|
157 |
+
trans_out = gr.Textbox()
|
158 |
+
trans_btn.click(fn=translate_text, inputs=[trans_in, trans_lang], outputs=trans_out)
|
159 |
+
|
160 |
+
with gr.Tab("π Plagiarism Checker"):
|
161 |
+
text1 = gr.Textbox(label="Text 1", lines=3)
|
162 |
+
text2 = gr.Textbox(label="Text 2", lines=3)
|
163 |
+
plag_btn = gr.Button("Check Similarity")
|
164 |
+
plag_out = gr.Textbox()
|
165 |
+
plag_btn.click(fn=check_plagiarism, inputs=[text1, text2], outputs=plag_out)
|
166 |
+
|
167 |
+
# ------------------------------
|
168 |
+
# Launch the App
|
169 |
+
# ------------------------------
|
170 |
demo.launch()
|