from transformers import T5Tokenizer, T5ForConditionalGeneration # Load the model and tokenizer model_name = "t5-base" # lightweight and works offline tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) def generate_mcqs(text, num_questions=3): input_text = f"generate questions: {text}" input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) outputs = model.generate( input_ids=input_ids, max_length=256, num_return_sequences=1, temperature=0.7 ) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) return decoded.strip() # 🔽 TEST EXAMPLE 🔽 if __name__ == "__main__": sample = """ The process of photosynthesis allows plants to convert sunlight, water, and carbon dioxide into food. This process takes place in the chloroplasts and releases oxygen as a byproduct. """ print("📘 Quiz Output:\n") print(generate_mcqs(sample))