satvs commited on
Commit
8c7ef1f
·
1 Parent(s): 0c8756c

Optimize submission

Browse files
Files changed (1) hide show
  1. tasks/image.py +4 -3
tasks/image.py CHANGED
@@ -106,6 +106,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
106
  #--------------------------------------------------------------------------------------------
107
 
108
  THRESHOLD = 0.18
 
109
 
110
  # Load model
111
  model_path = Path("tasks", "models")
@@ -113,8 +114,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
113
  logging.info(f"Loading model {model_name}")
114
  model = YOLO(Path(model_path, model_name), task="detect")
115
  device_name = device("cuda" if is_available() else "cpu")
116
- IMGSIZE = 1280
117
-
118
  predictions = []
119
  true_labels = []
120
  pred_boxes = []
@@ -128,7 +128,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
128
  true_labels.append(int(has_smoke))
129
 
130
  # Make prediction
131
- results = model.predict(example["image"], device=device_name, conf=THRESHOLD, verbose=True, imgsz=IMGSIZE)[0]
132
  pred_has_smoke = len(results) > 0
133
  predictions.append(int(pred_has_smoke))
134
 
@@ -139,6 +139,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
139
  true_boxes_list.append(image_true_boxes)
140
 
141
  # Append only one bounding box if at least one fire is detected
 
142
  if results.boxes.cls.numel()!=0:
143
  pred_boxes.append(results.boxes[0].xywhn.tolist()[0])
144
  else:
 
106
  #--------------------------------------------------------------------------------------------
107
 
108
  THRESHOLD = 0.18
109
+ IMGSIZE = 1280
110
 
111
  # Load model
112
  model_path = Path("tasks", "models")
 
114
  logging.info(f"Loading model {model_name}")
115
  model = YOLO(Path(model_path, model_name), task="detect")
116
  device_name = device("cuda" if is_available() else "cpu")
117
+
 
118
  predictions = []
119
  true_labels = []
120
  pred_boxes = []
 
128
  true_labels.append(int(has_smoke))
129
 
130
  # Make prediction
131
+ results = model.predict(example["image"], device=device_name, conf=THRESHOLD, verbose=False, half=True, imgsz=IMGSIZE)[0]
132
  pred_has_smoke = len(results) > 0
133
  predictions.append(int(pred_has_smoke))
134
 
 
139
  true_boxes_list.append(image_true_boxes)
140
 
141
  # Append only one bounding box if at least one fire is detected
142
+ # Note that multiple boxes could be appended
143
  if results.boxes.cls.numel()!=0:
144
  pred_boxes.append(results.boxes[0].xywhn.tolist()[0])
145
  else: