Spaces:
Sleeping
Sleeping
Optimize submission
Browse files- tasks/image.py +4 -3
tasks/image.py
CHANGED
@@ -106,6 +106,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
106 |
#--------------------------------------------------------------------------------------------
|
107 |
|
108 |
THRESHOLD = 0.18
|
|
|
109 |
|
110 |
# Load model
|
111 |
model_path = Path("tasks", "models")
|
@@ -113,8 +114,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
113 |
logging.info(f"Loading model {model_name}")
|
114 |
model = YOLO(Path(model_path, model_name), task="detect")
|
115 |
device_name = device("cuda" if is_available() else "cpu")
|
116 |
-
|
117 |
-
|
118 |
predictions = []
|
119 |
true_labels = []
|
120 |
pred_boxes = []
|
@@ -128,7 +128,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
128 |
true_labels.append(int(has_smoke))
|
129 |
|
130 |
# Make prediction
|
131 |
-
results = model.predict(example["image"], device=device_name, conf=THRESHOLD, verbose=True, imgsz=IMGSIZE)[0]
|
132 |
pred_has_smoke = len(results) > 0
|
133 |
predictions.append(int(pred_has_smoke))
|
134 |
|
@@ -139,6 +139,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
139 |
true_boxes_list.append(image_true_boxes)
|
140 |
|
141 |
# Append only one bounding box if at least one fire is detected
|
|
|
142 |
if results.boxes.cls.numel()!=0:
|
143 |
pred_boxes.append(results.boxes[0].xywhn.tolist()[0])
|
144 |
else:
|
|
|
106 |
#--------------------------------------------------------------------------------------------
|
107 |
|
108 |
THRESHOLD = 0.18
|
109 |
+
IMGSIZE = 1280
|
110 |
|
111 |
# Load model
|
112 |
model_path = Path("tasks", "models")
|
|
|
114 |
logging.info(f"Loading model {model_name}")
|
115 |
model = YOLO(Path(model_path, model_name), task="detect")
|
116 |
device_name = device("cuda" if is_available() else "cpu")
|
117 |
+
|
|
|
118 |
predictions = []
|
119 |
true_labels = []
|
120 |
pred_boxes = []
|
|
|
128 |
true_labels.append(int(has_smoke))
|
129 |
|
130 |
# Make prediction
|
131 |
+
results = model.predict(example["image"], device=device_name, conf=THRESHOLD, verbose=False, half=True, imgsz=IMGSIZE)[0]
|
132 |
pred_has_smoke = len(results) > 0
|
133 |
predictions.append(int(pred_has_smoke))
|
134 |
|
|
|
139 |
true_boxes_list.append(image_true_boxes)
|
140 |
|
141 |
# Append only one bounding box if at least one fire is detected
|
142 |
+
# Note that multiple boxes could be appended
|
143 |
if results.boxes.cls.numel()!=0:
|
144 |
pred_boxes.append(results.boxes[0].xywhn.tolist()[0])
|
145 |
else:
|