Spaces:
Sleeping
Sleeping
File size: 33,333 Bytes
e0aa230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
"""
AI Embedded Knowledge Agent - Main Application Entry Point
This is the main entry point for the RAG AI system that integrates all components
and launches the Gradio interface for deployment on Hugging Face.
"""
import nltk
nltk.download("punkt_tab")
import spacy.cli
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
import os
import sys
import logging
from pathlib import Path
from typing import Optional
# Load environment variables from .env file
try:
from dotenv import load_dotenv
load_dotenv()
except ImportError:
print(
"python-dotenv not installed. Please install it with: pip install python-dotenv"
)
# Add src directory to Python path
src_path = Path(__file__).parent / "src"
sys.path.insert(0, str(src_path))
# Import all components
from utils.config_manager import ConfigManager
from utils.error_handler import ErrorHandler, ErrorType
from ingestion.document_processor import DocumentProcessor
from ingestion.url_processor import URLProcessor
from ingestion.text_extractor import TextExtractor
from embedding.embedding_generator import EmbeddingGenerator
from storage.vector_db import VectorDB
from rag.optimized_query_processor import OptimizedQueryProcessor
from rag.response_generator import ResponseGenerator
from rag.live_search import LiveSearchProcessor
from rag.query_router import QueryRouter
from ui.gradio_app import GradioApp
class RAGSystem:
"""
Main RAG AI system that orchestrates all components.
This class integrates document processing, embedding generation,
vector storage, and query processing into a unified system.
"""
def __init__(self, config_path: Optional[str] = None):
"""
Initialize the RAG system with all components.
Args:
config_path: Path to configuration file
"""
# Initialize configuration
self.config_manager = ConfigManager(config_path)
self.config = self.config_manager.config
# Setup logging
self._setup_logging()
self.logger = logging.getLogger(__name__)
self.logger.info("Initializing RAG AI System...")
# Initialize error handler
self.error_handler = ErrorHandler()
# Validate environment and configuration
self._validate_environment()
# Initialize components
self._initialize_components()
# Run health checks
self._run_startup_health_checks()
self.logger.info("RAG AI System initialized successfully! ")
def _setup_logging(self):
"""Setup comprehensive logging configuration."""
log_config = self.config.get("logging", {})
log_level = getattr(logging, log_config.get("level", "INFO").upper())
log_format = log_config.get(
"format", "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
# Configure root logger with UTF-8 encoding
import io
utf8_stdout = io.TextIOWrapper(sys.stdout.buffer, encoding="utf-8")
logging.basicConfig(
level=log_level,
format=log_format,
handlers=[logging.StreamHandler(utf8_stdout)],
)
# Create logs directory if specified
log_file = log_config.get("file")
if log_file:
log_dir = Path(log_file).parent
log_dir.mkdir(parents=True, exist_ok=True)
# Add file handler with rotation
try:
from logging.handlers import RotatingFileHandler
file_handler = RotatingFileHandler(
log_file,
maxBytes=log_config.get("max_file_size_mb", 10) * 1024 * 1024,
backupCount=log_config.get("backup_count", 5),
)
file_handler.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(file_handler)
except Exception as e:
self.logger.warning(f"Could not setup file logging: {e}")
def _validate_environment(self):
"""Validate environment variables and configuration."""
self.logger.info("Validating environment...")
# Check required API keys
required_keys = ["GEMINI_API_KEY"]
optional_keys = ["PINECONE_API_KEY", "OPENAI_API_KEY"]
missing_required = []
for key in required_keys:
if not os.getenv(key):
missing_required.append(key)
if missing_required:
self.logger.error(
f" Missing required environment variables: {missing_required}"
)
self.logger.error(
"Please set the required API keys as environment variables"
)
# Don't raise error in demo mode, just warn
self.logger.warning("Running in demo mode with limited functionality")
# Check optional keys
missing_optional = []
for key in optional_keys:
if not os.getenv(key):
missing_optional.append(key)
if missing_optional:
self.logger.warning(
f"Missing optional environment variables: {missing_optional}"
)
self.logger.warning("Some features may be limited without these keys")
# Validate configuration
self._validate_configuration()
self.logger.info("Environment validation completed")
def _validate_configuration(self):
"""Validate configuration settings."""
try:
# Check embedding configuration
embedding_config = self.config.get("embedding", {})
if not embedding_config.get("model"):
self.logger.warning("Embedding model not specified, using default")
# Check vector database configuration
vector_db_config = self.config.get("vector_db", {})
if not vector_db_config.get("provider"):
self.logger.warning(
"Vector database provider not specified, using default"
)
# Check RAG configuration
rag_config = self.config.get("rag", {})
if rag_config.get("top_k", 5) <= 0:
self.logger.warning("Invalid top_k value, using default")
self.logger.info("Configuration validation completed")
except Exception as e:
self.logger.warning(f"Configuration validation warning: {e}")
def _initialize_components(self):
"""Initialize all system components with error handling."""
try:
self.logger.info("Initializing system components...")
# Document processing components
self.logger.info(" Initializing document processing components...")
self.document_processor = DocumentProcessor(
self.config_manager.get_section("document_processing")
)
self.url_processor = URLProcessor(
self.config_manager.get_section("url_processing")
)
self.text_extractor = TextExtractor(
self.config_manager.get_section("document_processing")
)
# Embedding and storage components
self.logger.info("Initializing embedding and storage components...")
embedding_config = self.config_manager.get_section("embedding")
embedding_config["api_key"] = os.getenv("GEMINI_API_KEY")
self.embedding_generator = EmbeddingGenerator(embedding_config)
vector_db_config = self.config_manager.get_section("vector_db")
vector_db_config["api_key"] = os.getenv("PINECONE_API_KEY")
self.vector_db = VectorDB(vector_db_config)
# RAG components
self.logger.info("Initializing RAG components...")
self.query_processor = OptimizedQueryProcessor(
self.embedding_generator,
self.vector_db,
self.config_manager.get_section("rag"),
)
rag_config = self.config_manager.get_section("rag")
# Add API keys to RAG config for LLM initialization
rag_config["gemini_api_key"] = os.getenv("GEMINI_API_KEY")
rag_config["openai_api_key"] = os.getenv("OPENAI_API_KEY")
self.response_generator = ResponseGenerator(rag_config)
# Live Search components
self.logger.info("Initializing Live Search components...")
live_search_config = self.config_manager.get_section("live_search") or {}
self.live_search_processor = LiveSearchProcessor(live_search_config)
# Query Router for intelligent routing
router_config = self.config_manager.get_section("query_router") or {}
self.query_router = QueryRouter(
self.query_processor, self.live_search_processor, router_config
)
self.logger.info("All components initialized successfully")
except Exception as e:
self.logger.error(f" Failed to initialize components: {str(e)}")
# Don't raise in demo mode, continue with limited functionality
self.logger.warning("Some components may not be fully functional")
def _run_startup_health_checks(self):
"""Run health checks on all components."""
self.logger.info("Running startup health checks...")
health_status = {
"document_processor": False,
"url_processor": False,
"text_extractor": False,
"embedding_generator": False,
"vector_db": False,
"query_processor": False,
"response_generator": False,
}
# Check each component
try:
if hasattr(self, "document_processor"):
health_status["document_processor"] = True
self.logger.info("Document processor: Healthy")
except:
self.logger.warning("Document processor: Not available")
try:
if hasattr(self, "url_processor"):
health_status["url_processor"] = True
self.logger.info("URL processor: Healthy")
except:
self.logger.warning("URL processor: Not available")
try:
if hasattr(self, "text_extractor"):
health_status["text_extractor"] = True
self.logger.info("Text extractor: Healthy")
except:
self.logger.warning("Text extractor: Not available")
try:
if hasattr(self, "embedding_generator"):
health_status["embedding_generator"] = True
self.logger.info("Embedding generator: Healthy")
except:
self.logger.warning("Embedding generator: Not available")
try:
if hasattr(self, "vector_db"):
health_status["vector_db"] = True
self.logger.info("Vector database: Healthy")
except:
self.logger.warning("Vector database: Not available")
try:
if hasattr(self, "query_processor"):
health_status["query_processor"] = True
self.logger.info("Query processor: Healthy")
except:
self.logger.warning("Query processor: Not available")
try:
if hasattr(self, "response_generator"):
health_status["response_generator"] = True
self.logger.info("Response generator: Healthy")
except:
self.logger.warning("Response generator: Not available")
# Overall health
healthy_components = sum(health_status.values())
total_components = len(health_status)
self.logger.info(
f"Health check complete: {healthy_components}/{total_components} components healthy"
)
if healthy_components < total_components:
self.logger.warning("Some components are not fully functional")
self.logger.warning("The system will run with limited capabilities")
def process_document(self, file_path: str) -> dict:
"""
Process a document through the complete pipeline.
Args:
file_path: Path to the document file
Returns:
Dictionary with processing results
"""
try:
self.logger.info(f" Processing document: {file_path}")
# Check if components are available
if not all(
hasattr(self, attr)
for attr in [
"document_processor",
"text_extractor",
"embedding_generator",
"vector_db",
]
):
return {
"status": "error",
"error": "Required components not available",
"chunks_processed": 0,
}
# Step 1: Extract content from document
doc_result = self.document_processor.process_document(file_path)
if not doc_result or "content" not in doc_result:
return {
"status": "error",
"error": "Failed to extract content from document",
"chunks_processed": 0,
}
# Step 2: Extract and chunk text
text_chunks = self.text_extractor.process_text(
doc_result["content"], doc_result.get("metadata", {})
)
if not text_chunks:
return {
"status": "error",
"error": "No text chunks generated",
"chunks_processed": 0,
}
# Step 3: Generate embeddings
embedded_chunks = self.embedding_generator.generate_embeddings(text_chunks)
if not embedded_chunks:
return {
"status": "error",
"error": "Failed to generate embeddings",
"chunks_processed": len(text_chunks),
}
# Step 4: Store in vector database
storage_success = self.vector_db.store_embeddings(embedded_chunks)
return {
"status": "success" if storage_success else "partial_success",
"chunks_processed": len(text_chunks),
"chunks_stored": len(embedded_chunks) if storage_success else 0,
"source": file_path,
}
except Exception as e:
self.logger.error(f" Error processing document: {str(e)}")
error_info = self.error_handler.handle_error(e, {"file_path": file_path})
return {
"status": "error",
"error": str(e),
"error_info": error_info,
"chunks_processed": 0,
}
def process_url(
self, url: str, max_depth: int = 1, follow_links: bool = True
) -> dict:
"""
Process a URL through the complete pipeline with advanced options.
Args:
url: URL to process
max_depth: Maximum crawling depth
follow_links: Whether to follow links
Returns:
Dictionary with processing results
"""
try:
self.logger.info(f"Processing URL: {url}")
# Check if components are available
if not all(
hasattr(self, attr)
for attr in [
"url_processor",
"text_extractor",
"embedding_generator",
"vector_db",
]
):
return {
"status": "error",
"error": "Required components not available",
"chunks_processed": 0,
}
# Step 1: Configure URL processor with advanced options
# Update URL processor configuration dynamically
self.url_processor.max_depth = max_depth
self.url_processor.follow_links = follow_links
# Reset processor state for fresh crawl
self.url_processor.reset()
# Extract content from URL
url_result = self.url_processor.process_url(url)
if not url_result or "content" not in url_result:
return {
"status": "error",
"error": "Failed to extract content from URL",
"chunks_processed": 0,
}
# Step 2: Extract and chunk text
text_chunks = self.text_extractor.process_text(
url_result["content"], url_result.get("metadata", {})
)
if not text_chunks:
return {
"status": "error",
"error": "No text chunks generated",
"chunks_processed": 0,
}
# Step 3: Generate embeddings
embedded_chunks = self.embedding_generator.generate_embeddings(text_chunks)
if not embedded_chunks:
return {
"status": "error",
"error": "Failed to generate embeddings",
"chunks_processed": len(text_chunks),
}
# Step 4: Store in vector database
storage_success = self.vector_db.store_embeddings(embedded_chunks)
# Process linked documents if any
linked_processed = 0
for linked_doc in url_result.get("linked_documents", []):
if linked_doc and "content" in linked_doc:
try:
linked_chunks = self.text_extractor.process_text(
linked_doc["content"], linked_doc.get("metadata", {})
)
if linked_chunks:
linked_embedded = (
self.embedding_generator.generate_embeddings(
linked_chunks
)
)
if linked_embedded and self.vector_db.store_embeddings(
linked_embedded
):
linked_processed += 1
except Exception as e:
self.logger.warning(f"Failed to process linked document: {e}")
return {
"status": "success" if storage_success else "partial_success",
"chunks_processed": len(text_chunks),
"chunks_stored": len(embedded_chunks) if storage_success else 0,
"linked_documents_processed": linked_processed,
"source": url,
}
except Exception as e:
self.logger.error(f" Error processing URL: {str(e)}")
error_info = self.error_handler.handle_error(e, {"url": url})
return {
"status": "error",
"error": str(e),
"error_info": error_info,
"chunks_processed": 0,
}
def query(
self,
question: str,
max_results: int = 5,
use_live_search: bool = False,
search_mode: str = "auto",
) -> dict:
"""
Process a query and generate a response with enhanced search control.
Args:
question: User question
max_results: Maximum number of results to retrieve
use_live_search: Whether to enable live web search (uses hybrid approach)
search_mode: Search mode - "auto", "local_only", "live_only", "hybrid"
Returns:
Dictionary with response and metadata
"""
try:
self.logger.info(
f"Processing query: {question[:100]}... (live_search: {use_live_search})"
)
# Check if components are available
if not all(
hasattr(self, attr)
for attr in ["query_processor", "response_generator"]
):
return {
"query": question,
"response": "Query processing components not available. Please check system configuration.",
"sources": [],
"confidence": 0.0,
"error": "Components not available",
}
# Use Query Router for intelligent routing if available
if hasattr(self, "query_router") and (
use_live_search or search_mode != "auto"
):
self.logger.info(f" Using Query Router with mode: {search_mode}")
search_options = {"search_depth": "basic", "time_range": "month"}
router_result = self.query_router.route_query(
question,
use_live_search=use_live_search,
max_results=max_results,
search_options=search_options,
search_mode=search_mode,
)
# Convert router result to standard format
if router_result.get("results"):
# Format sources from router results
sources = []
for result in router_result["results"]:
sources.append(
{
"title": result.get("title", ""),
"source": result.get("source", ""),
"content": result.get("content", ""),
"score": result.get("score", 0.0),
"type": result.get("type", "unknown"),
}
)
# Generate response using response generator
context_items = []
for result in router_result["results"]:
context_items.append(
{
"text": result.get("content", ""),
"source": result.get("source", ""),
"score": result.get("score", 0.0),
"metadata": result.get("metadata", {}),
}
)
response_result = self.response_generator.generate_response(
question, context_items
)
return {
"query": question,
"response": response_result.get(
"response", "No response generated"
),
"sources": sources,
"confidence": response_result.get("confidence", 0.0),
"context_items": len(context_items),
"processing_time": router_result.get("processing_time", 0),
"generation_time": response_result.get("generation_time", 0),
"model_used": response_result.get("model_used", "unknown"),
"routing_decision": router_result.get(
"routing_decision", "unknown"
),
"search_type": "routed_search",
}
else:
# Fallback to local search if router fails
self.logger.warning(
"Router returned no results, falling back to local search"
)
# Traditional local search path
# Step 1: Process query and retrieve context with max_results
# Update query processor config temporarily
original_top_k = self.query_processor.top_k
self.query_processor.top_k = max_results
query_result = self.query_processor.process_query(question)
# Restore original top_k
self.query_processor.top_k = original_top_k
if query_result.get("error"):
return {
"query": question,
"response": f"Query processing failed: {query_result['error']}",
"sources": [],
"confidence": 0.0,
"error": query_result["error"],
}
# Step 2: Generate response
response_result = self.response_generator.generate_response(
question, query_result.get("context", [])
)
# Combine results
return {
"query": question,
"response": response_result.get("response", "No response generated"),
"sources": response_result.get("sources", []),
"confidence": response_result.get("confidence", 0.0),
"context_items": query_result.get("total_results", 0),
"processing_time": query_result.get("processing_time", 0),
"generation_time": response_result.get("generation_time", 0),
"model_used": response_result.get("model_used", "unknown"),
"search_type": "local_search",
}
except Exception as e:
self.logger.error(f"Error processing query: {str(e)}")
error_info = self.error_handler.handle_error(e, {"query": question})
return {
"query": question,
"response": "I encountered an error while processing your question. Please try again.",
"sources": [],
"confidence": 0.0,
"error": str(e),
"error_info": error_info,
}
def get_system_status(self) -> dict:
"""
Get comprehensive system status.
Returns:
Dictionary with system status information
"""
try:
status = {
"overall_status": "healthy",
"components": {},
"configuration": {},
"environment": {},
}
# Check component status
components = [
"document_processor",
"url_processor",
"text_extractor",
"embedding_generator",
"vector_db",
"query_processor",
"response_generator",
]
for component in components:
status["components"][component] = hasattr(self, component)
# Configuration info
status["configuration"] = {
"embedding_model": self.config.get("embedding", {}).get(
"model", "unknown"
),
"vector_db_provider": self.config.get("vector_db", {}).get(
"provider", "unknown"
),
"rag_top_k": self.config.get("rag", {}).get("top_k", 5),
}
# Environment info
status["environment"] = {
"gemini_api_available": bool(os.getenv("GEMINI_API_KEY")),
"pinecone_api_available": bool(os.getenv("PINECONE_API_KEY")),
"openai_api_available": bool(os.getenv("OPENAI_API_KEY")),
}
# Overall status
healthy_components = sum(status["components"].values())
total_components = len(status["components"])
if healthy_components < total_components * 0.8:
status["overall_status"] = "degraded"
elif healthy_components < total_components * 0.5:
status["overall_status"] = "unhealthy"
return status
except Exception as e:
self.logger.error(f" Error getting system status: {e}")
return {"overall_status": "error", "error": str(e)}
def create_app():
"""
Create and configure the RAG application.
Returns:
Tuple of (RAG system instance, Gradio app instance)
"""
try:
# Initialize the RAG system
rag_system = RAGSystem()
# Create Gradio interface
ui_config = rag_system.config_manager.get_section("ui")
gradio_app = GradioApp(rag_system, ui_config)
return rag_system, gradio_app
except Exception as e:
print(f" Failed to create application: {str(e)}")
# Create a minimal system for demo purposes
print("Creating minimal demo system...")
# Create minimal config
minimal_config = {
"ui": {
"title": "AI Embedded Knowledge Agent (Demo Mode)",
"description": "Demo mode - some features may be limited. Please configure API keys for full functionality.",
}
}
# Create minimal RAG system
class MinimalRAGSystem:
def __init__(self):
self.config_manager = type(
"ConfigManager",
(),
{
"get_section": lambda self, section: minimal_config.get(
section, {}
)
},
)()
def process_document(self, file_path):
return {
"status": "error",
"error": "Demo mode - document processing not available",
}
def process_url(self, url):
return {
"status": "error",
"error": "Demo mode - URL processing not available",
}
def query(self, question):
return {
"query": question,
"response": "Demo mode: Please configure your API keys (GEMINI_API_KEY, PINECONE_API_KEY) to enable full functionality.",
"sources": [],
"confidence": 0.0,
}
rag_system = MinimalRAGSystem()
gradio_app = GradioApp(rag_system, minimal_config.get("ui", {}))
return rag_system, gradio_app
def main():
"""Main function to run the application."""
try:
print("Starting AI Embedded Knowledge Agent...")
print("=" * 50)
# Create the application
rag_system, gradio_app = create_app()
# Get launch configuration
try:
ui_config = rag_system.config_manager.get_section("ui")
except:
ui_config = {}
# Launch the Gradio interface
base_port = ui_config.get("port", 7860)
launch_config = {
"server_name": ui_config.get("server_name", "0.0.0.0"),
"server_port": base_port,
"share": ui_config.get("share", False),
"show_error": True,
"quiet": False,
}
# Try different ports if the default is in use
for port_offset in range(10): # Try ports 7860-7869
try:
current_port = base_port + port_offset
launch_config["server_port"] = current_port
print(
f"Launching interface on {launch_config['server_name']}:{current_port}"
)
print("=" * 50)
gradio_app.launch(**launch_config)
break # If successful, break out of the loop
except Exception as e:
if (
"bind" in str(e).lower()
or "address already in use" in str(e).lower()
):
print(f"Port {current_port} is in use, trying next port...")
continue
else:
# If it's a different error, re-raise it
raise e
else:
# If we've tried all ports without success
print(
"Could not find an available port. Please close other applications using ports 7860-7869."
)
raise Exception("No available ports found")
except KeyboardInterrupt:
print("\n👋 Shutting down gracefully...")
except Exception as e:
print(f" Failed to start application: {str(e)}")
print("Please check your configuration and API keys.")
sys.exit(1)
if __name__ == "__main__":
main()
|