File size: 10,263 Bytes
e0aa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# AI Embedded Knowledge Agent - Architecture Document

## 1. System Overview

The AI Embedded Knowledge Agent is a versatile knowledge management system designed to ingest, process, and retrieve information from various document types and web sources. Built for a hackathon and deployable on Hugging Face, this system enables users to upload documents or provide URLs, which are then processed, embedded, and stored for intelligent retrieval.

```mermaid

graph TD

    A[User Interface - Gradio] --> B[Document Processor]

    A --> C[URL Processor]

    B --> D[Text Extractor]

    C --> D

    D --> E[Embedding Generator - Gemini]

    E --> F[Vector Database - Pinecone]

    A --> G[Query Processor]

    G --> E

    G --> F

    G --> H[Response Generator - LangChain RAG]

    H --> A

```

## 2. Core Components

### 2.1 Document Ingestion System

This component handles the intake of various document formats and web content.

#### Document Processor

- **Responsibility**: Process uploaded documents (PDF, DOCX, CSV, PPTX, Excel)
- **Technologies**: PyMuPDF, python-docx, pandas, python-pptx, pdfplumber
- **Input**: Raw document files
- **Output**: Extracted text content

#### URL Processor

- **Responsibility**: Crawl and extract content from provided URLs, including nested documents and links
- **Technologies**: BeautifulSoup, requests, trafilatura
- **Input**: URLs
- **Output**: Extracted text content from web pages and linked documents

### 2.2 Knowledge Processing System

This component transforms raw text into queryable knowledge.

#### Text Extractor

- **Responsibility**: Clean, normalize, and chunk text from various sources
- **Technologies**: NLTK, spaCy, regex
- **Input**: Raw text from documents and web pages
- **Output**: Cleaned, normalized text chunks ready for embedding

#### Embedding Generator

- **Responsibility**: Generate vector embeddings for text chunks
- **Technology**: Gemini Embedding v3 (gemini-embedding-exp-03-07)
- **Input**: Processed text chunks
- **Output**: Vector embeddings

### 2.3 Knowledge Storage System

This component manages the storage and retrieval of vector embeddings.

#### Vector Database

- **Responsibility**: Store and index vector embeddings for efficient retrieval
- **Technology**: Pinecone
- **Input**: Vector embeddings with metadata
- **Output**: Retrieved relevant vectors based on similarity

### 2.4 Query Processing System

This component handles user queries and generates responses.

#### Query Processor

- **Responsibility**: Process user queries and convert them to vector embeddings
- **Technologies**: Gemini Embedding v3, LangChain
- **Input**: User queries
- **Output**: Query vector embeddings

#### Response Generator

- **Responsibility**: Generate coherent responses based on retrieved knowledge
- **Technology**: LangChain RAG (Retrieval Augmented Generation)
- **Input**: Retrieved relevant text chunks
- **Output**: Natural language responses

### 2.5 User Interface System

This component provides the user-facing interface.

#### Gradio UI

- **Responsibility**: Provide intuitive interface for document upload, URL input, and querying
- **Technology**: Gradio
- **Features**:
  - Document upload area
  - URL input field
  - Query input and response display
  - System status indicators

## 3. Data Flow

```mermaid

sequenceDiagram

    participant User

    participant UI as Gradio UI

    participant DP as Document Processor

    participant UP as URL Processor

    participant TE as Text Extractor

    participant EG as Embedding Generator

    participant VDB as Vector Database

    participant QP as Query Processor

    participant RG as Response Generator



    %% Document Upload Flow

    User->>UI: Upload Document

    UI->>DP: Process Document

    DP->>TE: Extract Text

    TE->>EG: Generate Embeddings

    EG->>VDB: Store Embeddings



    %% URL Processing Flow

    User->>UI: Input URL

    UI->>UP: Process URL

    UP->>TE: Extract Text

    TE->>EG: Generate Embeddings

    EG->>VDB: Store Embeddings



    %% Query Flow

    User->>UI: Submit Query

    UI->>QP: Process Query

    QP->>EG: Generate Query Embedding

    QP->>VDB: Retrieve Relevant Embeddings

    VDB->>QP: Return Relevant Chunks

    QP->>RG: Generate Response

    RG->>UI: Display Response

    UI->>User: Show Answer

```

## 4. Technical Architecture

### 4.1 Technology Stack

| Component          | Technology                                            | Purpose                                    |
| ------------------ | ----------------------------------------------------- | ------------------------------------------ |
| Document Parsing   | PyMuPDF, python-docx, pandas, python-pptx, pdfplumber | Extract text from various document formats |
| Web Scraping       | BeautifulSoup, requests, trafilatura                  | Extract content from web pages             |
| Text Processing    | NLTK, spaCy, regex                                    | Clean and chunk text                       |
| Embedding          | Gemini Embedding v3 (gemini-embedding-exp-03-07)      | Generate vector embeddings                 |
| Vector Storage     | Pinecone                                              | Store and retrieve vector embeddings       |
| RAG Implementation | LangChain                                             | Implement retrieval augmented generation   |
| User Interface     | Gradio                                                | Provide user-friendly interface            |

### 4.2 Integration Points

- **Document Processing β†’ Text Extraction**: Raw text extraction from documents
- **URL Processing β†’ Text Extraction**: Raw text extraction from web pages
- **Text Extraction β†’ Embedding Generation**: Processed text chunks for embedding
- **Embedding Generation β†’ Vector Database**: Storage of embeddings
- **Query Processing β†’ Embedding Generation**: Query embedding generation
- **Query Processing β†’ Vector Database**: Retrieval of relevant embeddings
- **Query Processing β†’ Response Generation**: Generation of coherent responses
- **Response Generation β†’ UI**: Display of responses to user

## 5. Deployment Architecture

The system is designed to be deployed on Hugging Face using their Spaces feature, which supports Gradio applications.

```mermaid

graph TD

    A[User] --> B[Hugging Face Space]

    B --> C[Gradio Application]

    C --> D[Document Processing]

    C --> E[URL Processing]

    C --> F[Query Processing]

    D --> G[Gemini API]

    E --> G

    F --> G

    D --> H[Pinecone API]

    E --> H

    F --> H

```

### 5.1 Deployment Considerations

- **API Keys**: Secure storage of Gemini and Pinecone API keys
- **Rate Limiting**: Handling API rate limits for both Gemini and Pinecone
- **Memory Management**: Efficient memory usage within Hugging Face constraints
- **Statelessness**: Designing components to be stateless where possible
- **Error Handling**: Robust error handling for API failures and timeouts

## 6. Scalability and Performance

For the hackathon version, the focus is on functionality rather than scalability. However, the architecture is designed with the following considerations:

- **Document Size Limits**: Implement reasonable limits on document sizes
- **Chunking Strategy**: Optimize text chunking for better retrieval performance
- **Caching**: Implement basic caching for frequently accessed embeddings
- **Asynchronous Processing**: Use asynchronous processing where appropriate

## 7. Future Enhancements

While not implemented in the hackathon version, the architecture supports future enhancements:

- **Authentication**: User authentication and document access control
- **Document Versioning**: Track changes to documents over time
- **Advanced RAG Techniques**: Implement more sophisticated RAG approaches
- **Multi-Modal Support**: Add support for images and other non-text content
- **Collaborative Features**: Allow multiple users to collaborate on knowledge bases
- **Custom Training**: Fine-tune models for specific domains

## 8. Folder Structure

```

rag-ai/

β”œβ”€β”€ src/

β”‚   β”œβ”€β”€ ingestion/

β”‚   β”‚   β”œβ”€β”€ document_processor.py

β”‚   β”‚   β”œβ”€β”€ url_processor.py

β”‚   β”‚   └── text_extractor.py

β”‚   β”œβ”€β”€ embedding/

β”‚   β”‚   └── embedding_generator.py

β”‚   β”œβ”€β”€ storage/

β”‚   β”‚   └── vector_db.py

β”‚   β”œβ”€β”€ rag/

β”‚   β”‚   β”œβ”€β”€ query_processor.py

β”‚   β”‚   └── response_generator.py

β”‚   β”œβ”€β”€ ui/

β”‚   β”‚   └── gradio_app.py

β”‚   └── utils/

β”‚       β”œβ”€β”€ config_manager.py

β”‚       └── error_handler.py

β”œβ”€β”€ config/

β”‚   └── config.yaml

β”œβ”€β”€ docs/

β”‚   β”œβ”€β”€ architecture.md

β”‚   └── api_documentation.md

β”œβ”€β”€ tests/

β”‚   β”œβ”€β”€ test_document_processor.py

β”‚   β”œβ”€β”€ test_url_processor.py

β”‚   └── ...

β”œβ”€β”€ scripts/

β”‚   β”œβ”€β”€ setup.py

β”‚   └── deploy_to_huggingface.py

β”œβ”€β”€ data/

β”‚   β”œβ”€β”€ sample_documents/

β”‚   └── test_data/

β”œβ”€β”€ .gitignore

β”œβ”€β”€ requirements.txt

β”œβ”€β”€ README.md

└── app.py

```

## 9. Implementation Roadmap

1. **Phase 1: Core Infrastructure**

   - Set up project structure
   - Implement basic document processing
   - Set up Pinecone integration

2. **Phase 2: Knowledge Processing**

   - Implement text extraction and chunking
   - Integrate Gemini embedding API
   - Develop vector storage and retrieval

3. **Phase 3: Query System**

   - Implement query processing
   - Develop RAG response generation
   - Integrate components

4. **Phase 4: User Interface**

   - Develop Gradio UI
   - Integrate UI with backend components
   - Add error handling and user feedback

5. **Phase 5: URL Processing**

   - Implement URL crawling
   - Add nested document extraction
   - Integrate with existing components

6. **Phase 6: Testing and Deployment**
   - Comprehensive testing
   - Optimization for Hugging Face deployment
   - Documentation and demo preparation