Spaces:
Sleeping
Sleeping
File size: 24,373 Bytes
e0aa230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
"""
Document Processor Module
This module is responsible for processing various document formats including
PDF, DOCX, CSV, PPTX, and Excel files with complete functionality.
Technologies: PyMuPDF, python-docx, pandas, python-pptx, pdfplumber
"""
import os
import time
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Any, Optional, Union
import logging
# Import document processing libraries
try:
import fitz # PyMuPDF
import docx
import pandas as pd
import pptx
import pdfplumber
from openpyxl import load_workbook
except ImportError as e:
logging.warning(f"Some document processing libraries are not installed: {e}")
from utils.error_handler import DocumentProcessingError, error_handler, ErrorType
class DocumentProcessor:
"""
Processes various document formats and extracts text content with full functionality.
Supported formats:
- PDF (using PyMuPDF and pdfplumber)
- DOCX (using python-docx)
- CSV/Excel (using pandas)
- PPTX (using python-pptx)
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize the DocumentProcessor with configuration.
Args:
config: Configuration dictionary with processing parameters
"""
self.config = config or {}
self.logger = logging.getLogger(__name__)
# Configuration settings
self.max_file_size_mb = self.config.get("max_file_size_mb", 50)
self.supported_formats = self.config.get(
"supported_formats",
[".pdf", ".docx", ".csv", ".xlsx", ".xls", ".pptx", ".txt", ".md"],
)
@error_handler(ErrorType.DOCUMENT_PROCESSING)
def process_document(self, file_path: str) -> Dict[str, Any]:
"""
Process a document and extract its text content with metadata.
Args:
file_path: Path to the document file
Returns:
Dictionary containing extracted text and metadata
"""
if not os.path.exists(file_path):
raise DocumentProcessingError(f"Document not found: {file_path}", file_path)
# Validate file size
file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
if file_size_mb > self.max_file_size_mb:
raise DocumentProcessingError(
f"File too large: {file_size_mb:.1f}MB (max: {self.max_file_size_mb}MB)",
file_path,
)
file_extension = os.path.splitext(file_path)[1].lower()
# Validate file format
if file_extension not in self.supported_formats:
raise DocumentProcessingError(
f"Unsupported file format: {file_extension}", file_path
)
self.logger.info(f"Processing document: {file_path} ({file_size_mb:.1f}MB)")
try:
if file_extension == ".pdf":
return self._process_pdf(file_path)
elif file_extension == ".docx":
return self._process_docx(file_path)
elif file_extension in [".csv", ".xlsx", ".xls"]:
return self._process_spreadsheet(file_path)
elif file_extension == ".pptx":
return self._process_pptx(file_path)
elif file_extension in [".txt", ".md"]:
return self._process_text_file(file_path)
except Exception as e:
raise DocumentProcessingError(
f"Error processing document: {str(e)}", file_path
)
def process_batch(self, file_paths: List[str]) -> List[Dict[str, Any]]:
"""
Process multiple documents in batch.
Args:
file_paths: List of file paths to process
Returns:
List of processed document results
"""
results = []
self.logger.info(f"Processing batch of {len(file_paths)} documents")
for i, file_path in enumerate(file_paths):
try:
result = self.process_document(file_path)
results.append(result)
self.logger.info(f"Processed {i+1}/{len(file_paths)}: {file_path}")
except Exception as e:
self.logger.error(f"β Failed to process {file_path}: {str(e)}")
# Continue with other files
continue
return results
def _extract_metadata(self, file_path: str) -> Dict[str, Any]:
"""
Extract common metadata from file.
Args:
file_path: Path to the file
Returns:
Dictionary containing file metadata
"""
file_stat = os.stat(file_path)
file_path_obj = Path(file_path)
return {
"filename": file_path_obj.name,
"file_extension": file_path_obj.suffix.lower(),
"file_size_bytes": file_stat.st_size,
"file_size_mb": round(file_stat.st_size / (1024 * 1024), 2),
"created_time": datetime.fromtimestamp(file_stat.st_ctime).isoformat(),
"modified_time": datetime.fromtimestamp(file_stat.st_mtime).isoformat(),
"processed_time": datetime.now().isoformat(),
}
def _process_pdf(self, file_path: str) -> Dict[str, Any]:
"""
π Extract text from a PDF document using PyMuPDF with fallback to pdfplumber.
Args:
file_path: Path to the PDF file
Returns:
Dictionary with extracted text and metadata
"""
self.logger.info(f"Processing PDF: {file_path}")
text_content = []
metadata = self._extract_metadata(file_path)
try:
# Primary method: PyMuPDF (faster)
doc = fitz.open(file_path)
metadata.update(
{
"page_count": doc.page_count,
"title": doc.metadata.get("title", ""),
"author": doc.metadata.get("author", ""),
"subject": doc.metadata.get("subject", ""),
"creator": doc.metadata.get("creator", ""),
}
)
for page_num in range(doc.page_count):
page = doc[page_num]
text = page.get_text()
if text.strip(): # Only add non-empty pages
text_content.append({"page": page_num + 1, "content": text.strip()})
doc.close()
except Exception as e:
self.logger.warning(f"PyMuPDF failed, trying pdfplumber: {str(e)}")
# Fallback method: pdfplumber (more robust for complex PDFs)
try:
with pdfplumber.open(file_path) as pdf:
metadata["page_count"] = len(pdf.pages)
for page_num, page in enumerate(pdf.pages):
text = page.extract_text()
if text and text.strip():
text_content.append(
{"page": page_num + 1, "content": text.strip()}
)
except Exception as fallback_error:
raise DocumentProcessingError(
f"Both PDF extraction methods failed: {str(fallback_error)}",
file_path,
)
# Final content processing
full_text = "\n\n".join([item["content"] for item in text_content])
metadata["total_characters"] = len(full_text)
metadata["total_words"] = len(full_text.split())
return {
"content": full_text,
"pages": text_content,
"metadata": metadata,
"source": file_path,
"document_type": "pdf",
}
def _process_docx(self, file_path: str) -> Dict[str, Any]:
"""
Extract text from a DOCX document using python-docx.
Args:
file_path: Path to the DOCX file
Returns:
Dictionary with extracted text and metadata
"""
self.logger.info(f"Processing DOCX: {file_path}")
try:
doc = docx.Document(file_path)
metadata = self._extract_metadata(file_path)
# Extract document properties
core_props = doc.core_properties
metadata.update(
{
"title": core_props.title or "",
"author": core_props.author or "",
"subject": core_props.subject or "",
"created": (
core_props.created.isoformat() if core_props.created else ""
),
"modified": (
core_props.modified.isoformat() if core_props.modified else ""
),
"paragraph_count": len(doc.paragraphs),
}
)
# Extract text content
paragraphs = []
full_text_parts = []
for i, paragraph in enumerate(doc.paragraphs):
text = paragraph.text.strip()
if text: # Only include non-empty paragraphs
paragraphs.append({"paragraph": i + 1, "content": text})
full_text_parts.append(text)
# Extract tables if present
tables_content = []
for table_idx, table in enumerate(doc.tables):
table_data = []
for row in table.rows:
row_data = [cell.text.strip() for cell in row.cells]
if any(row_data): # Only include non-empty rows
table_data.append(row_data)
if table_data:
tables_content.append({"table": table_idx + 1, "data": table_data})
# Add table content to full text
table_text = "\n".join([" | ".join(row) for row in table_data])
full_text_parts.append(f"\n[Table {table_idx + 1}]\n{table_text}")
full_text = "\n\n".join(full_text_parts)
metadata.update(
{
"total_characters": len(full_text),
"total_words": len(full_text.split()),
"table_count": len(tables_content),
}
)
return {
"content": full_text,
"paragraphs": paragraphs,
"tables": tables_content,
"metadata": metadata,
"source": file_path,
"document_type": "docx",
}
except Exception as e:
raise DocumentProcessingError(f"Error processing DOCX: {str(e)}", file_path)
def _process_spreadsheet(self, file_path: str) -> Dict[str, Any]:
"""
Extract text from a CSV or Excel file using pandas.
Args:
file_path: Path to the spreadsheet file
Returns:
Dictionary with extracted text and metadata
"""
file_extension = os.path.splitext(file_path)[1].lower()
self.logger.info(f"Processing spreadsheet: {file_path}")
try:
metadata = self._extract_metadata(file_path)
sheets_data = []
if file_extension == ".csv":
# π Process CSV file
df = pd.read_csv(file_path, encoding="utf-8")
sheet_content = self._process_dataframe(df, "Sheet1")
sheets_data.append(sheet_content)
metadata["sheet_count"] = 1
else:
# Process Excel file
excel_file = pd.ExcelFile(file_path)
metadata["sheet_count"] = len(excel_file.sheet_names)
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(file_path, sheet_name=sheet_name)
sheet_content = self._process_dataframe(df, sheet_name)
sheets_data.append(sheet_content)
# π Combine all sheets content
full_text_parts = []
for sheet in sheets_data:
full_text_parts.append(f"[{sheet['sheet_name']}]\n{sheet['content']}")
full_text = "\n\n".join(full_text_parts)
metadata.update(
{
"total_characters": len(full_text),
"total_words": len(full_text.split()),
"total_rows": sum(sheet["row_count"] for sheet in sheets_data),
"total_columns": (
max(sheet["column_count"] for sheet in sheets_data)
if sheets_data
else 0
),
}
)
return {
"content": full_text,
"sheets": sheets_data,
"metadata": metadata,
"source": file_path,
"document_type": "spreadsheet",
}
except Exception as e:
raise DocumentProcessingError(
f"Error processing spreadsheet: {str(e)}", file_path
)
def _process_dataframe(self, df: pd.DataFrame, sheet_name: str) -> Dict[str, Any]:
"""
Process a pandas DataFrame into text content.
Args:
df: Pandas DataFrame
sheet_name: Name of the sheet
Returns:
Dictionary with processed sheet data
"""
# Clean the dataframe
df = df.dropna(how="all") # Remove completely empty rows
df = df.fillna("") # Fill NaN with empty strings
# Create text representation
content_parts = []
# Add headers
headers = df.columns.tolist()
content_parts.append(" | ".join(str(h) for h in headers))
content_parts.append("-" * 50) # Separator
# Add data rows
for _, row in df.iterrows():
row_text = " | ".join(str(cell) for cell in row.values)
content_parts.append(row_text)
content = "\n".join(content_parts)
return {
"sheet_name": sheet_name,
"content": content,
"headers": headers,
"row_count": len(df),
"column_count": len(df.columns),
"data": df.to_dict("records"), # For structured access
}
def _process_pptx(self, file_path: str) -> Dict[str, Any]:
"""
π― Extract text from a PowerPoint presentation using python-pptx.
Args:
file_path: Path to the PPTX file
Returns:
Dictionary with extracted text and metadata
"""
self.logger.info(f" Processing PPTX: {file_path}")
try:
presentation = pptx.Presentation(file_path)
metadata = self._extract_metadata(file_path)
# Extract presentation metadata
core_props = presentation.core_properties
metadata.update(
{
"title": core_props.title or "",
"author": core_props.author or "",
"subject": core_props.subject or "",
"created": (
core_props.created.isoformat() if core_props.created else ""
),
"modified": (
core_props.modified.isoformat() if core_props.modified else ""
),
"slide_count": len(presentation.slides),
}
)
# π― Extract content from slides
slides_content = []
full_text_parts = []
for slide_idx, slide in enumerate(presentation.slides):
slide_text_parts = []
# Extract text from all shapes in the slide
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text.strip():
slide_text_parts.append(shape.text.strip())
if slide_text_parts:
slide_content = "\n".join(slide_text_parts)
slides_content.append(
{"slide": slide_idx + 1, "content": slide_content}
)
full_text_parts.append(f"[Slide {slide_idx + 1}]\n{slide_content}")
full_text = "\n\n".join(full_text_parts)
metadata.update(
{
"total_characters": len(full_text),
"total_words": len(full_text.split()),
"slides_with_content": len(slides_content),
}
)
return {
"content": full_text,
"slides": slides_content,
"metadata": metadata,
"source": file_path,
"document_type": "pptx",
}
except Exception as e:
raise DocumentProcessingError(f"Error processing PPTX: {str(e)}", file_path)
def _process_text_file(self, file_path: str) -> Dict[str, Any]:
"""
π Extract text from plain text files (.txt, .md).
Args:
file_path: Path to the text file
Returns:
Dictionary with extracted text and metadata
"""
file_extension = os.path.splitext(file_path)[1].lower()
self.logger.info(f" Processing text file: {file_path}")
try:
metadata = self._extract_metadata(file_path)
# Try different encodings for robust text reading
encodings = ["utf-8", "utf-8-sig", "latin-1", "cp1252"]
content = None
for encoding in encodings:
try:
with open(file_path, "r", encoding=encoding) as file:
content = file.read()
self.logger.info(
f" Successfully read file with {encoding} encoding"
)
break
except UnicodeDecodeError:
continue
except Exception as e:
self.logger.warning(f"Failed to read with {encoding}: {str(e)}")
continue
if content is None:
raise DocumentProcessingError(
f"Could not read file with any supported encoding", file_path
)
# Clean and process content
content = content.strip()
if not content:
raise DocumentProcessingError(
f"File is empty or contains no readable text", file_path
)
# Split content into logical sections for better processing
sections = []
if file_extension == ".md":
# π For Markdown files, split by headers
sections = self._split_markdown_content(content)
else:
# π For plain text, split by paragraphs
sections = self._split_text_content(content)
# Update metadata with text-specific information
lines = content.split("\n")
metadata.update(
{
"file_type": (
"markdown" if file_extension == ".md" else "plain_text"
),
"line_count": len(lines),
"paragraph_count": len(
[p for p in content.split("\n\n") if p.strip()]
),
"total_characters": len(content),
"total_words": len(content.split()),
"encoding_used": encoding if "encoding" in locals() else "utf-8",
"sections_count": len(sections),
}
)
return {
"content": content,
"sections": sections,
"metadata": metadata,
"source": file_path,
"document_type": "markdown" if file_extension == ".md" else "text",
}
except Exception as e:
raise DocumentProcessingError(
f"Error processing text file: {str(e)}", file_path
)
def _split_markdown_content(self, content: str) -> List[Dict[str, Any]]:
"""
Split Markdown content by headers for better organization.
Args:
content: Markdown content
Returns:
List of sections with headers and content
"""
sections = []
lines = content.split("\n")
current_section = {"header": "", "content": [], "level": 0}
for line in lines:
# Check for markdown headers
if line.strip().startswith("#"):
# Save previous section if it has content
if current_section["content"] or current_section["header"]:
section_content = "\n".join(current_section["content"]).strip()
if section_content or current_section["header"]:
sections.append(
{
"header": current_section["header"],
"content": section_content,
"level": current_section["level"],
"section_index": len(sections),
}
)
# Start new section
header_level = len(line) - len(line.lstrip("#"))
header_text = line.lstrip("#").strip()
current_section = {
"header": header_text,
"content": [],
"level": header_level,
}
else:
current_section["content"].append(line)
# Add the last section
if current_section["content"] or current_section["header"]:
section_content = "\n".join(current_section["content"]).strip()
if section_content or current_section["header"]:
sections.append(
{
"header": current_section["header"],
"content": section_content,
"level": current_section["level"],
"section_index": len(sections),
}
)
# If no headers found, treat entire content as one section
if not sections:
sections.append(
{
"header": "Document Content",
"content": content.strip(),
"level": 1,
"section_index": 0,
}
)
return sections
def _split_text_content(self, content: str) -> List[Dict[str, Any]]:
"""
Split plain text content by paragraphs.
Args:
content: Plain text content
Returns:
List of paragraph sections
"""
sections = []
paragraphs = [p.strip() for p in content.split("\n\n") if p.strip()]
for i, paragraph in enumerate(paragraphs):
sections.append(
{
"header": f"Paragraph {i + 1}",
"content": paragraph,
"level": 1,
"section_index": i,
}
)
# If no clear paragraphs, treat as single section
if not sections:
sections.append(
{
"header": "Document Content",
"content": content.strip(),
"level": 1,
"section_index": 0,
}
)
return sections
|