File size: 17,556 Bytes
e0aa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
"""

Ingestion Pipeline Module



This module orchestrates the complete document ingestion process,

integrating all components for a seamless workflow.



Components: DocumentProcessor, URLProcessor, TextExtractor, EmbeddingGenerator, VectorDB

"""

import logging
from typing import Dict, List, Any, Optional, Union
from pathlib import Path
import asyncio
from datetime import datetime

from .document_processor import DocumentProcessor
from .url_processor import URLProcessor
from ingestion.text_extractor import TextExtractor
from embedding.embedding_generator import EmbeddingGenerator
from storage.vector_db import VectorDB
from utils.config_manager import ConfigManager
from utils.error_handler import error_handler, ErrorType, RAGError


class IngestionPipeline:
    """

    Complete ingestion pipeline that orchestrates document processing, text extraction,

    embedding generation, and vector storage.



    Features:

    - End-to-end document ingestion 

    - URL content processing 

    - Batch processing capabilities 

    - Progress tracking and statistics 

    - Error handling and recovery 

    """

    def __init__(self, config_path: Optional[str] = None):
        """

        Initialize the ingestion pipeline.



        Args:

            config_path: Path to configuration file

        """
        self.logger = logging.getLogger(__name__)

        # Load configuration
        self.config_manager = ConfigManager(config_path)
        self.config = self.config_manager.config

        # Initialize statistics
        self.stats = {
            "documents_processed": 0,
            "urls_processed": 0,
            "chunks_created": 0,
            "embeddings_generated": 0,
            "vectors_stored": 0,
            "errors_encountered": 0,
            "start_time": None,
            "end_time": None,
        }

        # Initialize components
        self._initialize_components()

    def _initialize_components(self):
        """Initialize all pipeline components."""
        try:
            # ๐Ÿ“„ Document processor
            doc_config = self.config.get("document_processing", {})
            self.document_processor = DocumentProcessor(doc_config)

            # URL processor
            url_config = self.config.get("url_processing", {})
            self.url_processor = URLProcessor(url_config)

            # Text extractor
            text_config = self.config.get("document_processing", {})
            self.text_extractor = TextExtractor(text_config)

            # ๐Ÿ”ฎ Embedding generator
            embedding_config = self.config.get("embedding", {})
            embedding_config["api_key"] = self.config.get("api_keys", {}).get(
                "gemini_api_key"
            )
            self.embedding_generator = EmbeddingGenerator(embedding_config)

            # Vector database
            vector_config = self.config.get("vector_db", {})
            vector_config["api_key"] = self.config.get("api_keys", {}).get(
                "pinecone_api_key"
            )
            self.vector_db = VectorDB(vector_config)

            self.logger.info("All pipeline components initialized successfully")

        except Exception as e:
            self.logger.error(f"โŒ Failed to initialize pipeline components: {str(e)}")
            raise RAGError(f"Pipeline initialization failed: {str(e)}")

    @error_handler(ErrorType.DOCUMENT_PROCESSING)
    def process_documents(self, file_paths: List[str]) -> Dict[str, Any]:
        """

        Process multiple documents through the complete pipeline.



        Args:

            file_paths: List of document file paths



        Returns:

            Processing results and statistics

        """
        self.logger.info(
            f"Starting document processing pipeline for {len(file_paths)} files"
        )
        self.stats["start_time"] = datetime.now()

        all_results = []

        for i, file_path in enumerate(file_paths):
            try:
                self.logger.info(
                    f"๐Ÿ“„ Processing document {i+1}/{len(file_paths)}: {file_path}"
                )

                # ๐Ÿ“„ Step 1: Process document
                doc_result = self.document_processor.process_document(file_path)
                self.stats["documents_processed"] += 1

                # Step 2: Extract and chunk text
                text_chunks = self.text_extractor.process_text(
                    doc_result["content"], doc_result["metadata"]
                )
                self.stats["chunks_created"] += len(text_chunks)

                # ๐Ÿ”ฎ Step 3: Generate embeddings
                embedded_chunks = self.embedding_generator.generate_embeddings(
                    text_chunks
                )
                valid_embeddings = [
                    chunk for chunk in embedded_chunks if chunk.get("embedding")
                ]
                self.stats["embeddings_generated"] += len(valid_embeddings)

                # Step 4: Store in vector database
                if valid_embeddings:
                    storage_success = self.vector_db.store_embeddings(valid_embeddings)
                    if storage_success:
                        self.stats["vectors_stored"] += len(valid_embeddings)

                # Compile results
                result = {
                    "file_path": file_path,
                    "document_type": doc_result.get("document_type"),
                    "chunks_created": len(text_chunks),
                    "embeddings_generated": len(valid_embeddings),
                    "storage_success": storage_success if valid_embeddings else False,
                    "metadata": doc_result["metadata"],
                }

                all_results.append(result)
                self.logger.info(
                    f"Document processed: {len(text_chunks)} chunks, {len(valid_embeddings)} embeddings"
                )

            except Exception as e:
                self.stats["errors_encountered"] += 1
                self.logger.error(f"โŒ Error processing {file_path}: {str(e)}")

                all_results.append(
                    {
                        "file_path": file_path,
                        "error": str(e),
                        "chunks_created": 0,
                        "embeddings_generated": 0,
                        "storage_success": False,
                    }
                )

        self.stats["end_time"] = datetime.now()

        return {
            "results": all_results,
            "statistics": self.get_statistics(),
            "success_rate": self._calculate_success_rate(all_results),
        }

    @error_handler(ErrorType.URL_PROCESSING)
    def process_urls(self, urls: List[str]) -> Dict[str, Any]:
        """

        Process multiple URLs through the complete pipeline.



        Args:

            urls: List of URLs to process



        Returns:

            Processing results and statistics

        """
        self.logger.info(f"Starting URL processing pipeline for {len(urls)} URLs")
        self.stats["start_time"] = datetime.now()

        all_results = []

        for i, url in enumerate(urls):
            try:
                self.logger.info(f"Processing URL {i+1}/{len(urls)}: {url}")

                # Step 1: Process URL
                url_result = self.url_processor.process_url(url)
                if not url_result:
                    self.logger.warning(f"No content extracted from URL: {url}")
                    continue

                self.stats["urls_processed"] += 1

                # Step 2: Extract and chunk text
                text_chunks = self.text_extractor.process_text(
                    url_result["content"], url_result["metadata"]
                )
                self.stats["chunks_created"] += len(text_chunks)

                # ๐Ÿ”ฎ Step 3: Generate embeddings
                embedded_chunks = self.embedding_generator.generate_embeddings(
                    text_chunks
                )
                valid_embeddings = [
                    chunk for chunk in embedded_chunks if chunk.get("embedding")
                ]
                self.stats["embeddings_generated"] += len(valid_embeddings)

                # Step 4: Store in vector database
                storage_success = False
                if valid_embeddings:
                    storage_success = self.vector_db.store_embeddings(valid_embeddings)
                    if storage_success:
                        self.stats["vectors_stored"] += len(valid_embeddings)

                # Process linked documents if any
                linked_results = []
                for linked_doc in url_result.get("linked_documents", []):
                    if linked_doc.get("content"):
                        linked_chunks = self.text_extractor.process_text(
                            linked_doc["content"], linked_doc["metadata"]
                        )
                        linked_embedded = self.embedding_generator.generate_embeddings(
                            linked_chunks
                        )
                        linked_valid = [
                            chunk for chunk in linked_embedded if chunk.get("embedding")
                        ]

                        if linked_valid:
                            self.vector_db.store_embeddings(linked_valid)
                            linked_results.append(
                                {
                                    "url": linked_doc["source"],
                                    "chunks": len(linked_chunks),
                                    "embeddings": len(linked_valid),
                                }
                            )

                # Compile results
                result = {
                    "url": url,
                    "chunks_created": len(text_chunks),
                    "embeddings_generated": len(valid_embeddings),
                    "storage_success": storage_success,
                    "linked_documents": linked_results,
                    "metadata": url_result["metadata"],
                }

                all_results.append(result)
                self.logger.info(
                    f"URL processed: {len(text_chunks)} chunks, {len(valid_embeddings)} embeddings"
                )

            except Exception as e:
                self.stats["errors_encountered"] += 1
                self.logger.error(f"โŒ Error processing {url}: {str(e)}")

                all_results.append(
                    {
                        "url": url,
                        "error": str(e),
                        "chunks_created": 0,
                        "embeddings_generated": 0,
                        "storage_success": False,
                    }
                )

        self.stats["end_time"] = datetime.now()

        return {
            "results": all_results,
            "statistics": self.get_statistics(),
            "success_rate": self._calculate_success_rate(all_results),
        }

    def process_mixed_sources(

        self, file_paths: Optional[List[str]] = None, urls: Optional[List[str]] = None

    ) -> Dict[str, Any]:
        """

        Process both documents and URLs in a single pipeline run.



        Args:

            file_paths: Optional list of document file paths

            urls: Optional list of URLs



        Returns:

            Combined processing results

        """
        self.logger.info("Starting mixed source processing pipeline")

        results = {
            "document_results": [],
            "url_results": [],
            "combined_statistics": {},
            "overall_success_rate": 0.0,
        }

        # ๐Ÿ“„ Process documents
        if file_paths:
            doc_results = self.process_documents(file_paths)
            results["document_results"] = doc_results["results"]

        # Process URLs
        if urls:
            url_results = self.process_urls(urls)
            results["url_results"] = url_results["results"]

        # Combine statistics
        results["combined_statistics"] = self.get_statistics()

        # ๐ŸŽฏ Calculate overall success rate
        all_items = results["document_results"] + results["url_results"]
        results["overall_success_rate"] = self._calculate_success_rate(all_items)

        return results

    def _calculate_success_rate(self, results: List[Dict[str, Any]]) -> float:
        """

        Calculate success rate from results.



        Args:

            results: List of processing results



        Returns:

            Success rate as percentage

        """
        if not results:
            return 0.0

        successful = sum(
            1 for result in results if result.get("storage_success", False)
        )
        return (successful / len(results)) * 100

    def get_statistics(self) -> Dict[str, Any]:
        """

        Get comprehensive pipeline statistics.



        Returns:

            Statistics dictionary

        """
        stats = self.stats.copy()

        if stats["start_time"] and stats["end_time"]:
            runtime = stats["end_time"] - stats["start_time"]
            stats["runtime_seconds"] = runtime.total_seconds()
            stats["processing_rate"] = (
                stats["documents_processed"] + stats["urls_processed"]
            ) / max(1, runtime.total_seconds())

        # ๐Ÿ”ฎ Add component statistics
        stats["embedding_stats"] = self.embedding_generator.get_statistics()
        stats["vector_db_stats"] = self.vector_db.get_index_stats()
        stats["url_processor_stats"] = self.url_processor.get_statistics()

        return stats

    def health_check(self) -> Dict[str, Any]:
        """

        Perform comprehensive health check on all components.



        Returns:

            Health check results

        """
        health = {
            "overall_status": "healthy",
            "timestamp": datetime.now().isoformat(),
            "components": {},
        }

        try:
            # ๐Ÿ”ฎ Check embedding generator
            if self.embedding_generator.client:
                health["components"]["embedding_generator"] = "Ready"
            else:
                health["components"]["embedding_generator"] = "โŒ Not configured"
                health["overall_status"] = "degraded"

            # Check vector database
            vector_health = self.vector_db.health_check()
            health["components"]["vector_database"] = vector_health["status"]
            if vector_health["status"] != "healthy":
                health["overall_status"] = "degraded"

            # Add component details
            health["details"] = {
                "vector_db_health": vector_health,
                "embedding_stats": self.embedding_generator.get_statistics(),
                "pipeline_stats": self.get_statistics(),
            }

        except Exception as e:
            health["overall_status"] = "unhealthy"
            health["error"] = str(e)

        return health

    def reset_statistics(self):
        """Reset pipeline statistics."""
        self.stats = {
            "documents_processed": 0,
            "urls_processed": 0,
            "chunks_created": 0,
            "embeddings_generated": 0,
            "vectors_stored": 0,
            "errors_encountered": 0,
            "start_time": None,
            "end_time": None,
        }

        # Reset component statistics
        self.embedding_generator.stats = {
            "total_requests": 0,
            "successful_requests": 0,
            "failed_requests": 0,
            "cache_hits": 0,
            "total_tokens_processed": 0,
            "start_time": datetime.now(),
        }

        self.vector_db.reset_stats()
        self.url_processor.reset()

        self.logger.info("All pipeline statistics reset")


# Convenience function for quick pipeline usage
def create_pipeline(config_path: Optional[str] = None) -> IngestionPipeline:
    """

    Create and return a configured ingestion pipeline.



    Args:

        config_path: Optional path to configuration file



    Returns:

        Configured IngestionPipeline instance

    """
    return IngestionPipeline(config_path)


# ๐Ÿ“„ Example usage functions
def process_documents_simple(

    file_paths: List[str], config_path: Optional[str] = None

) -> Dict[str, Any]:
    """

    ๐Ÿ“„ Simple function to process documents with default configuration.



    Args:

        file_paths: List of document file paths

        config_path: Optional configuration file path



    Returns:

        Processing results

    """
    pipeline = create_pipeline(config_path)
    return pipeline.process_documents(file_paths)


def process_urls_simple(

    urls: List[str], config_path: Optional[str] = None

) -> Dict[str, Any]:
    """

    Simple function to process URLs with default configuration.



    Args:

        urls: List of URLs to process

        config_path: Optional configuration file path



    Returns:

        Processing results

    """
    pipeline = create_pipeline(config_path)
    return pipeline.process_urls(urls)