File size: 17,342 Bytes
e0aa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
"""

Text Extractor Module



This module is responsible for cleaning, normalizing, and chunking text

from various sources with complete NLP functionality.



Technologies: NLTK, spaCy, regex, langdetect

"""

import re
import logging
from datetime import datetime
from typing import Dict, List, Any, Optional, Union
import unicodedata

# Import NLP libraries
try:
    import nltk
    from nltk.tokenize import sent_tokenize, word_tokenize
    from nltk.corpus import stopwords
    from nltk.stem import PorterStemmer
    import spacy
    from langdetect import detect
    from langdetect.lang_detect_exception import LangDetectException as LangDetectError

    # Download required NLTK data
    try:
        nltk.data.find("tokenizers/punkt")
    except LookupError:
        nltk.download("punkt", quiet=True)

    try:
        nltk.data.find("corpora/stopwords")
    except LookupError:
        nltk.download("stopwords", quiet=True)

except ImportError as e:
    logging.warning(f"Some NLP libraries are not installed: {e}")

from utils.error_handler import error_handler, ErrorType


class TextExtractor:
    """

    Cleans, normalizes, and chunks text from various sources with intelligent processing.



    Features:

    - Advanced text cleaning and normalization 

    - Language detection 

    - Intelligent sentence segmentation 

    - Smart text chunking with overlap 

    - Metadata preservation 

    """

    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """

        Initialize the TextExtractor with configuration.



        Args:

            config: Configuration dictionary with processing parameters

        """
        self.config = config or {}
        self.logger = logging.getLogger(__name__)

        # Configuration settings
        self.chunk_size = self.config.get("chunk_size", 1000)
        self.chunk_overlap = self.config.get("chunk_overlap", 200)
        self.min_chunk_size = self.config.get("min_chunk_size", 100)
        self.max_chunk_size = self.config.get("max_chunk_size", 2000)

        # NLP settings
        self.enable_language_detection = self.config.get(
            "enable_language_detection", True
        )
        self.preserve_formatting = self.config.get("preserve_formatting", False)
        self.remove_stopwords = self.config.get("remove_stopwords", False)

        # Initialize NLP components
        self.nlp = None
        self.stemmer = None
        self.stop_words = set()

        self._initialize_nlp_components()

    def _initialize_nlp_components(self):
        """Initialize NLP components with error handling."""
        try:
            # Load spaCy model for advanced processing
            self.nlp = spacy.load("en_core_web_sm")
            self.logger.info("spaCy model loaded successfully")
        except Exception as e:
            self.logger.warning(f"Could not load spaCy model: {str(e)}")

        try:
            # Initialize NLTK components
            self.stemmer = PorterStemmer()
            self.stop_words = set(stopwords.words("english"))
            self.logger.info("NLTK components initialized")
        except Exception as e:
            self.logger.warning(f"Could not initialize NLTK components: {str(e)}")

    @error_handler(ErrorType.DOCUMENT_PROCESSING)
    def process_text(

        self,

        text: Union[str, List[str]],

        metadata: Optional[Dict[str, Any]] = None,

        preserve_structure: bool = False,

    ) -> List[Dict[str, Any]]:
        """

        Process text by cleaning, normalizing, and chunking with intelligence.



        Args:

            text: Raw text content (string or list of strings)

            metadata: Optional metadata to include with each chunk

            preserve_structure: Whether to preserve original text structure



        Returns:

            List of dictionaries containing processed text chunks and metadata

        """
        if not text:
            return []

        # Convert list to string if needed
        if isinstance(text, list):
            text = "\n".join(str(item) for item in text if item)

        if not text.strip():
            return []

        self.logger.info(f"Processing text: {len(text)} characters")

        # Detect language
        language = self._detect_language(text)

        # Clean and normalize the text
        cleaned_text = self._clean_text(text, preserve_structure)

        if len(cleaned_text.strip()) < self.min_chunk_size:
            self.logger.warning(
                f"Text too short after cleaning: {len(cleaned_text)} chars"
            )
            return []

        # Split text into chunks
        chunks = self._chunk_text(cleaned_text)

        # Prepare result with enhanced metadata
        result = []
        base_metadata = metadata.copy() if metadata else {}
        base_metadata.update(
            {
                "language": language,
                "original_length": len(text),
                "cleaned_length": len(cleaned_text),
                "chunk_count": len(chunks),
                "processing_time": datetime.now().isoformat(),
                "chunk_size_config": self.chunk_size,
                "chunk_overlap_config": self.chunk_overlap,
            }
        )

        for i, chunk in enumerate(chunks):
            chunk_metadata = base_metadata.copy()
            chunk_stats = self._analyze_chunk(chunk)

            chunk_metadata.update(
                {
                    "chunk_index": i,
                    "chunk_id": f"chunk_{i}_{hash(chunk) % 10000}",
                    **chunk_stats,
                }
            )

            result.append({"content": chunk, "metadata": chunk_metadata})

        self.logger.info(f"Processed text into {len(chunks)} chunks")
        return result

    def _detect_language(self, text: str) -> str:
        """

        Detect the language of the text.



        Args:

            text: Text to analyze



        Returns:

            Language code (e.g., 'en', 'es', 'fr')

        """
        if not self.enable_language_detection:
            return "en"  # Default to English

        try:
            # Use a sample of text for detection (first 1000 chars)
            sample = text[:1000].strip()
            if len(sample) < 50:  # Too short for reliable detection
                return "en"

            language = detect(sample)
            self.logger.info(f"Detected language: {language}")
            return language

        except (LangDetectError, Exception) as e:
            self.logger.warning(f"Language detection failed: {str(e)}")
            return "en"  # Default to English

    def _clean_text(self, text: str, preserve_structure: bool = False) -> str:
        """

        Clean and normalize text with advanced processing.



        Args:

            text: Raw text to clean

            preserve_structure: Whether to preserve formatting



        Returns:

            Cleaned and normalized text

        """
        # Unicode normalization
        text = unicodedata.normalize("NFKC", text)

        if not preserve_structure:
            # Basic cleaning operations
            # Remove excessive whitespace but preserve paragraph breaks
            text = re.sub(r"[ \t]+", " ", text)  # Multiple spaces/tabs to single space
            text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text)  # Multiple newlines to double

            # Remove or normalize special characters
            # Keep basic punctuation and common symbols
            text = re.sub(r'[^\w\s.,;:!?\'"\-()[\]{}/@#$%&*+=<>|\\~`\n]', " ", text)

            # Clean up whitespace again
            text = re.sub(r"[ \t]+", " ", text)
            text = re.sub(r"\n\s*\n+", "\n\n", text)

        # Remove common artifacts
        # Remove page numbers and headers/footers patterns
        text = re.sub(r"\n\s*\d+\s*\n", "\n", text)  # Standalone page numbers
        text = re.sub(r"\n\s*Page \d+.*?\n", "\n", text, flags=re.IGNORECASE)

        # Remove excessive punctuation
        text = re.sub(r"[.]{3,}", "...", text)  # Multiple dots
        text = re.sub(r"[-]{3,}", "---", text)  # Multiple dashes

        # Final cleanup
        text = text.strip()

        return text

    def _chunk_text(self, text: str) -> List[str]:
        """

        Split text into chunks with intelligent boundary detection.



        Args:

            text: Cleaned text to chunk



        Returns:

            List of text chunks

        """
        if len(text) <= self.chunk_size:
            return [text]

        chunks = []

        # Try intelligent chunking with spaCy first
        if self.nlp:
            try:
                return self._chunk_with_spacy(text)
            except Exception as e:
                self.logger.warning(f"spaCy chunking failed: {str(e)}")

        # Fallback to NLTK sentence-based chunking
        try:
            return self._chunk_with_sentences(text)
        except Exception as e:
            self.logger.warning(f"Sentence chunking failed: {str(e)}")

        # Final fallback to character-based chunking
        return self._chunk_by_characters(text)

    def _chunk_with_spacy(self, text: str) -> List[str]:
        """

        Intelligent chunking using spaCy for better semantic boundaries.



        Args:

            text: Text to chunk



        Returns:

            List of text chunks

        """
        doc = self.nlp(text)
        chunks = []
        current_chunk = []
        current_size = 0

        for sent in doc.sents:
            sent_text = sent.text.strip()
            sent_size = len(sent_text)

            # πŸ“ Check if adding this sentence exceeds chunk size
            if current_size + sent_size > self.chunk_size and current_chunk:
                # πŸ“¦ Finalize current chunk
                chunk_text = " ".join(current_chunk)
                chunks.append(chunk_text)

                # Start new chunk with overlap
                overlap_chunk, overlap_size = self._create_overlap(current_chunk)
                current_chunk = overlap_chunk
                current_size = overlap_size

            current_chunk.append(sent_text)
            current_size += sent_size

        # πŸ“¦ Add the last chunk
        if current_chunk:
            chunk_text = " ".join(current_chunk)
            if len(chunk_text.strip()) >= self.min_chunk_size:
                chunks.append(chunk_text)

        return chunks

    def _chunk_with_sentences(self, text: str) -> List[str]:
        """

        Chunk text using NLTK sentence tokenization.



        Args:

            text: Text to chunk



        Returns:

            List of text chunks

        """
        sentences = sent_tokenize(text)
        chunks = []
        current_chunk = []
        current_size = 0

        for sentence in sentences:
            sentence = sentence.strip()
            sentence_size = len(sentence)

            # πŸ“ Check chunk size limit
            if current_size + sentence_size > self.chunk_size and current_chunk:
                # πŸ“¦ Finalize current chunk
                chunk_text = " ".join(current_chunk)
                chunks.append(chunk_text)

                # Create overlap
                overlap_chunk, overlap_size = self._create_overlap(current_chunk)
                current_chunk = overlap_chunk
                current_size = overlap_size

            current_chunk.append(sentence)
            current_size += sentence_size

        # πŸ“¦ Add final chunk
        if current_chunk:
            chunk_text = " ".join(current_chunk)
            if len(chunk_text.strip()) >= self.min_chunk_size:
                chunks.append(chunk_text)

        return chunks

    def _chunk_by_characters(self, text: str) -> List[str]:
        """

        Fallback character-based chunking with boundary detection.



        Args:

            text: Text to chunk



        Returns:

            List of text chunks

        """
        chunks = []
        start = 0

        while start < len(text):
            end = start + self.chunk_size

            # Try to find a good boundary
            if end < len(text):
                # Look for sentence boundaries first
                for boundary in [". ", "! ", "? ", "\n\n", "\n", ". "]:
                    boundary_pos = text.rfind(boundary, start, end)
                    if boundary_pos > start + self.min_chunk_size:
                        end = boundary_pos + len(boundary)
                        break

            chunk = text[start:end].strip()
            if len(chunk) >= self.min_chunk_size:
                chunks.append(chunk)

            # Move start position with overlap
            start = max(start + 1, end - self.chunk_overlap)

        return chunks

    def _create_overlap(self, sentences: List[str]) -> tuple:
        """

        Create overlap from previous chunk sentences.



        Args:

            sentences: List of sentences from previous chunk



        Returns:

            Tuple of (overlap_sentences, overlap_size)

        """
        overlap_sentences = []
        overlap_size = 0

        # Add sentences from the end for overlap
        for sentence in reversed(sentences):
            if overlap_size + len(sentence) <= self.chunk_overlap:
                overlap_sentences.insert(0, sentence)
                overlap_size += len(sentence)
            else:
                break

        return overlap_sentences, overlap_size

    def _analyze_chunk(self, chunk: str) -> Dict[str, Any]:
        """

        Analyze chunk statistics and properties.



        Args:

            chunk: Text chunk to analyze



        Returns:

            Dictionary with chunk statistics

        """
        words = chunk.split()

        stats = {
            "character_count": len(chunk),
            "word_count": len(words),
            "sentence_count": len(sent_tokenize(chunk)) if chunk else 0,
            "avg_word_length": (
                sum(len(word) for word in words) / len(words) if words else 0
            ),
        }

        # Advanced analysis with spaCy if available
        if self.nlp:
            try:
                doc = self.nlp(chunk)
                stats.update(
                    {
                        "entity_count": len(doc.ents),
                        "noun_count": len(
                            [token for token in doc if token.pos_ == "NOUN"]
                        ),
                        "verb_count": len(
                            [token for token in doc if token.pos_ == "VERB"]
                        ),
                    }
                )
            except Exception:
                pass  # Skip advanced analysis if it fails

        return stats

    def extract_keywords(self, text: str, max_keywords: int = 10) -> List[str]:
        """

        Extract keywords from text using NLP techniques.



        Args:

            text: Text to extract keywords from

            max_keywords: Maximum number of keywords to return



        Returns:

            List of extracted keywords

        """
        if not self.nlp:
            return []

        try:
            doc = self.nlp(text)

            # Extract keywords based on POS tags and frequency
            keywords = []
            word_freq = {}

            for token in doc:
                if (
                    token.pos_ in ["NOUN", "PROPN", "ADJ"]
                    and not token.is_stop
                    and not token.is_punct
                    and len(token.text) > 2
                ):

                    word = token.lemma_.lower()
                    word_freq[word] = word_freq.get(word, 0) + 1

            # Sort by frequency and return top keywords
            sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
            keywords = [word for word, freq in sorted_words[:max_keywords]]

            return keywords

        except Exception as e:
            self.logger.warning(f"Keyword extraction failed: {str(e)}")
            return []

    def get_text_statistics(self, text: str) -> Dict[str, Any]:
        """

        Get comprehensive text statistics.



        Args:

            text: Text to analyze



        Returns:

            Dictionary with text statistics

        """
        words = text.split()
        sentences = sent_tokenize(text) if text else []

        stats = {
            "character_count": len(text),
            "word_count": len(words),
            "sentence_count": len(sentences),
            "paragraph_count": len([p for p in text.split("\n\n") if p.strip()]),
            "avg_words_per_sentence": len(words) / len(sentences) if sentences else 0,
            "avg_chars_per_word": (
                sum(len(word) for word in words) / len(words) if words else 0
            ),
            "language": self._detect_language(text),
        }

        return stats