Spaces:
Sleeping
Sleeping
File size: 20,569 Bytes
e0aa230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
"""
URL Processor Module
This module is responsible for crawling and extracting content from provided URLs,
including nested documents and links with complete web scraping functionality.
Technologies: BeautifulSoup, requests, trafilatura
"""
import logging
import time
import re
from datetime import datetime
from typing import Dict, List, Any, Optional, Set
from urllib.parse import urlparse, urljoin, urlunparse
from urllib.robotparser import RobotFileParser
# Import web scraping libraries
try:
import requests
from bs4 import BeautifulSoup
import trafilatura
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
except ImportError as e:
logging.warning(f"Some web scraping libraries are not installed: {e}")
from utils.error_handler import URLProcessingError, error_handler, ErrorType
class URLProcessor:
"""
Processes URLs to extract content from web pages and linked documents with full functionality.
Features:
- Web page content extraction with trafilatura
- Recursive link following with depth control
- Rate limiting and retry logic
- Robots.txt respect
- Multiple content type handling
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize the URLProcessor with configuration.
Args:
config: Configuration dictionary with processing parameters
"""
self.config = config or {}
self.logger = logging.getLogger(__name__)
# Configuration settings
self.max_depth = self.config.get("max_depth", 1)
self.follow_links = self.config.get("follow_links", True)
self.max_pages = self.config.get("max_pages", 10)
self.timeout = self.config.get("timeout", 10)
self.user_agent = self.config.get("user_agent", "RAG-AI-Bot/1.0")
self.respect_robots_txt = self.config.get("respect_robots_txt", True)
self.rate_limit_delay = self.config.get("rate_limit_delay", 1.0)
# Retry configuration
self.max_retries = 3
self.backoff_factor = 0.3
# Track visited URLs and robots.txt cache
self.visited_urls: Set[str] = set()
self.robots_cache: Dict[str, RobotFileParser] = {}
self.last_request_time: Dict[str, float] = {}
# Setup session with retry strategy
self.session = self._setup_session()
def _setup_session(self) -> requests.Session:
"""
Setup requests session with retry strategy and headers.
Returns:
Configured requests session
"""
session = requests.Session()
# Retry strategy
retry_strategy = Retry(
total=self.max_retries,
backoff_factor=self.backoff_factor,
status_forcelist=[429, 500, 502, 503, 504],
)
adapter = HTTPAdapter(max_retries=retry_strategy)
session.mount("http://", adapter)
session.mount("https://", adapter)
# π·Default headers
session.headers.update(
{
"User-Agent": self.user_agent,
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
}
)
return session
@error_handler(ErrorType.URL_PROCESSING)
def process_url(self, url: str, depth: int = 0) -> Dict[str, Any]:
"""
Process a URL and extract its content with full functionality.
Args:
url: The URL to process
depth: Current crawling depth
Returns:
Dictionary containing extracted text and metadata
"""
# Validation checks
if not url or not self._is_valid_url(url):
raise URLProcessingError(f"Invalid URL: {url}", url)
if depth > self.max_depth:
self.logger.info(f"π Max depth reached for: {url}")
return {}
if len(self.visited_urls) >= self.max_pages:
self.logger.info(f"π Max pages limit reached")
return {}
if url in self.visited_urls:
self.logger.info(f"Already visited: {url}")
return {}
# Check robots.txt if enabled
if self.respect_robots_txt and not self._can_fetch(url):
self.logger.info(f"Robots.txt disallows: {url}")
return {}
self.visited_urls.add(url)
self.logger.info(f"Processing URL: {url} (depth: {depth})")
try:
# Rate limiting
self._apply_rate_limit(url)
# Fetch and extract content
content, metadata = self._extract_content(url)
if not content:
self.logger.warning(f"No content extracted from: {url}")
return {}
result = {
"content": content,
"metadata": metadata,
"source": url,
"depth": depth,
"linked_documents": [],
"document_type": "webpage",
"crawl_stats": {
"max_depth_configured": self.max_depth,
"follow_links_enabled": self.follow_links,
"current_depth": depth,
},
}
# Follow links if configured and not at max depth
if (
self.follow_links
and depth < self.max_depth
and len(self.visited_urls) < self.max_pages
):
links = self._extract_links(url, content)
self.logger.info(f" Found {len(links)} links on {url}")
for link in links[:5]: # Limit links per page
try:
linked_content = self.process_url(link, depth + 1)
if linked_content:
result["linked_documents"].append(linked_content)
except Exception as e:
self.logger.warning(
f"Failed to process linked URL {link}: {str(e)}"
)
continue
return result
except Exception as e:
raise URLProcessingError(f"Error processing URL: {str(e)}", url)
def process_batch(self, urls: List[str]) -> List[Dict[str, Any]]:
"""
Process multiple URLs in batch.
Args:
urls: List of URLs to process
Returns:
List of processed URL results
"""
results = []
self.logger.info(f"Processing batch of {len(urls)} URLs")
for i, url in enumerate(urls):
try:
result = self.process_url(url)
if result:
results.append(result)
self.logger.info(f"Processed {i+1}/{len(urls)}: {url}")
except Exception as e:
self.logger.error(f"β Failed to process {url}: {str(e)}")
continue
return results
def _is_valid_url(self, url: str) -> bool:
"""
Validate URL format and scheme.
Args:
url: URL to validate
Returns:
True if URL is valid
"""
try:
parsed = urlparse(url)
return bool(parsed.netloc) and parsed.scheme in ["http", "https"]
except Exception:
return False
def _can_fetch(self, url: str) -> bool:
"""
Check if URL can be fetched according to robots.txt.
Args:
url: URL to check
Returns:
True if URL can be fetched
"""
try:
parsed_url = urlparse(url)
base_url = f"{parsed_url.scheme}://{parsed_url.netloc}"
if base_url not in self.robots_cache:
robots_url = urljoin(base_url, "/robots.txt")
rp = RobotFileParser()
rp.set_url(robots_url)
try:
rp.read()
self.robots_cache[base_url] = rp
except Exception:
# If robots.txt can't be fetched, assume allowed
return True
return self.robots_cache[base_url].can_fetch(self.user_agent, url)
except Exception:
# If robots.txt check fails, assume allowed
return True
def _apply_rate_limit(self, url: str) -> None:
"""
Apply rate limiting between requests to the same domain.
Args:
url: URL being processed
"""
domain = urlparse(url).netloc
current_time = time.time()
if domain in self.last_request_time:
time_since_last = current_time - self.last_request_time[domain]
if time_since_last < self.rate_limit_delay:
sleep_time = self.rate_limit_delay - time_since_last
self.logger.info(
f"Rate limiting: sleeping {sleep_time:.1f}s for {domain}"
)
time.sleep(sleep_time)
self.last_request_time[domain] = time.time()
def _extract_content(self, url: str) -> tuple:
"""
Extract content from a web page using trafilatura with BeautifulSoup fallback.
Args:
url: The URL to extract content from
Returns:
Tuple of (content, metadata)
"""
self.logger.info(f"Extracting content from: {url}")
try:
# Fetch the page
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
# Basic metadata
metadata = {
"url": url,
"status_code": response.status_code,
"content_type": response.headers.get("content-type", ""),
"content_length": len(response.content),
"extracted_time": datetime.now().isoformat(),
"encoding": response.encoding or "utf-8",
}
# Check content type
content_type = response.headers.get("content-type", "").lower()
if "application/pdf" in content_type:
return self._handle_pdf_url(response, metadata)
elif "text/html" not in content_type and "text/plain" not in content_type:
self.logger.warning(f"Unsupported content type: {content_type}")
return "", metadata
# Primary method: trafilatura (best for content extraction)
try:
content = trafilatura.extract(
response.text,
include_comments=False,
include_tables=True,
include_formatting=False,
favor_precision=True,
)
if content and len(content.strip()) > 50: # Minimum content threshold
# Extract additional metadata with trafilatura
metadata_extracted = trafilatura.extract_metadata(response.text)
if metadata_extracted:
metadata.update(
{
"title": metadata_extracted.title or "",
"author": metadata_extracted.author or "",
"description": metadata_extracted.description or "",
"sitename": metadata_extracted.sitename or "",
"date": metadata_extracted.date or "",
}
)
metadata.update(
{
"extraction_method": "trafilatura",
"word_count": len(content.split()),
"character_count": len(content),
}
)
return content.strip(), metadata
except Exception as e:
self.logger.warning(f"Trafilatura failed: {str(e)}")
# Fallback method: BeautifulSoup
return self._extract_with_beautifulsoup(response.text, metadata)
except requests.RequestException as e:
raise URLProcessingError(f"Failed to fetch URL: {str(e)}", url)
except Exception as e:
raise URLProcessingError(f"Content extraction failed: {str(e)}", url)
def _extract_with_beautifulsoup(self, html: str, metadata: Dict[str, Any]) -> tuple:
"""
Fallback content extraction using BeautifulSoup.
Args:
html: HTML content
metadata: Existing metadata dictionary
Returns:
Tuple of (content, metadata)
"""
try:
soup = BeautifulSoup(html, "html.parser")
# Extract metadata
title_tag = soup.find("title")
if title_tag:
metadata["title"] = title_tag.get_text().strip()
# Meta tags
for meta in soup.find_all("meta"):
name = meta.get("name", "").lower()
content = meta.get("content", "")
if name == "description":
metadata["description"] = content
elif name == "author":
metadata["author"] = content
# Remove unwanted elements
for element in soup(
["script", "style", "nav", "header", "footer", "aside"]
):
element.decompose()
# Extract main content
content_selectors = [
"main",
"article",
".content",
"#content",
".post",
".entry",
]
content = ""
for selector in content_selectors:
content_elem = soup.select_one(selector)
if content_elem:
content = content_elem.get_text(separator="\n", strip=True)
break
# Fallback to body if no main content found
if not content:
body = soup.find("body")
if body:
content = body.get_text(separator="\n", strip=True)
# Clean and validate content
content = re.sub(r"\n\s*\n", "\n\n", content) # Clean multiple newlines
content = content.strip()
metadata.update(
{
"extraction_method": "beautifulsoup",
"word_count": len(content.split()),
"character_count": len(content),
}
)
return content, metadata
except Exception as e:
self.logger.error(f"β BeautifulSoup extraction failed: {str(e)}")
return "", metadata
def _handle_pdf_url(
self, response: requests.Response, metadata: Dict[str, Any]
) -> tuple:
"""
π Handle PDF content from URL.
Args:
response: HTTP response containing PDF
metadata: Existing metadata
Returns:
Tuple of (content, metadata)
"""
self.logger.info("π Detected PDF content, extracting text...")
try:
# Save PDF temporarily and process with document processor
import tempfile
import os
from .document_processor import DocumentProcessor
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
tmp_file.write(response.content)
tmp_file.flush()
# Process PDF
doc_processor = DocumentProcessor(self.config)
result = doc_processor.process_document(tmp_file.name)
# Cleanup
os.unlink(tmp_file.name)
metadata.update(
{
"document_type": "pdf_from_url",
"extraction_method": "document_processor",
}
)
metadata.update(result.get("metadata", {}))
return result.get("content", ""), metadata
except Exception as e:
self.logger.error(f"β PDF extraction failed: {str(e)}")
return "", metadata
def _extract_links(self, url: str, content: str) -> List[str]:
"""
Extract links from a web page.
Args:
url: The source URL
content: Page content (for context)
Returns:
List of discovered URLs
"""
self.logger.info(f" Extracting links from: {url}")
try:
response = self.session.get(url, timeout=self.timeout)
soup = BeautifulSoup(response.text, "html.parser")
links = []
base_domain = urlparse(url).netloc
for a_tag in soup.find_all("a", href=True):
href = a_tag.get("href")
if not href:
continue
# Convert relative URLs to absolute
absolute_url = urljoin(url, href)
# Filter links
if self._should_follow_link(absolute_url, base_domain):
links.append(absolute_url)
# π― Remove duplicates and limit
unique_links = list(dict.fromkeys(links)) # Preserve order
return unique_links[:20] # Limit to prevent explosion
except Exception as e:
self.logger.error(f"β Link extraction failed: {str(e)}")
return []
def _should_follow_link(self, url: str, base_domain: str) -> bool:
"""
Determine if a link should be followed.
Args:
url: URL to check
base_domain: Base domain of the source page
Returns:
True if link should be followed
"""
try:
parsed = urlparse(url)
# Skip non-HTTP(S) links
if parsed.scheme not in ["http", "https"]:
return False
# Skip already visited
if url in self.visited_urls:
return False
# Skip file downloads (basic check)
path = parsed.path.lower()
skip_extensions = [
".pdf",
".doc",
".docx",
".zip",
".exe",
".dmg",
".jpg",
".png",
".gif",
]
if any(path.endswith(ext) for ext in skip_extensions):
return False
# Skip fragments and query-heavy URLs
if parsed.fragment or len(parsed.query) > 100:
return False
# Prefer same domain (but allow subdomains)
link_domain = parsed.netloc
if not (
link_domain == base_domain or link_domain.endswith("." + base_domain)
):
return False
return True
except Exception:
return False
def reset(self):
"""Reset the processor state, clearing visited URLs and caches."""
self.visited_urls.clear()
self.robots_cache.clear()
self.last_request_time.clear()
self.logger.info("URL processor state reset")
def get_statistics(self) -> Dict[str, Any]:
"""
Get processing statistics.
Returns:
Dictionary with processing statistics
"""
return {
"urls_processed": len(self.visited_urls),
"domains_cached": len(self.robots_cache),
"rate_limited_domains": len(self.last_request_time),
"max_pages_limit": self.max_pages,
"max_depth_limit": self.max_depth,
}
|