File size: 10,796 Bytes
e0aa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""

MCP Tavily Integration Module



This module demonstrates how to integrate Tavily API via MCP (Model Context Protocol)

for live web search functionality in the RAG system.



Technology: MCP + Tavily API

"""

import logging
import time
from typing import Dict, List, Any, Optional
from datetime import datetime


class MCPTavilyIntegration:
    """

    Handles MCP integration with Tavily API for live web search.



    This class provides the bridge between the RAG system and Tavily's

    search capabilities through the Model Context Protocol.

    """

    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """

        Initialize MCP Tavily integration.



        Args:

            config: Configuration dictionary

        """
        self.config = config or {}
        self.logger = logging.getLogger(__name__)

        # πŸ”§ MCP Configuration
        self.server_name = self.config.get("mcp_server_name", "tavily-mcp")
        self.tool_name = self.config.get("mcp_tool_name", "tavily-search")
        self.timeout = self.config.get("timeout", 30)

        self.logger.info(" MCP Tavily Integration initialized")

    def search_web(

        self,

        query: str,

        max_results: int = 5,

        search_depth: str = "basic",

        time_range: str = "month",

        topic: str = "general",

    ) -> Dict[str, Any]:
        """

        Perform web search using Tavily API via MCP.



        Args:

            query: Search query

            max_results: Maximum number of results

            search_depth: Search depth (basic/advanced)

            time_range: Time range for results

            topic: Search topic category



        Returns:

            Dictionary with search results

        """
        try:
            self.logger.info(f" MCP Tavily search: '{query}' (depth: {search_depth})")

            # πŸš€ Prepare MCP arguments
            mcp_arguments = {
                "query": query,
                "max_results": min(max_results, 20),  # Tavily limit
                "search_depth": search_depth,
                "topic": topic,
                "include_raw_content": True,
                "time_range": time_range,
            }

            # 🌐 This is where the actual MCP call would be made
            # In a real implementation, this would use the MCP client:

            """

            Example MCP call structure:

            

            result = use_mcp_tool(

                server_name=self.server_name,

                tool_name=self.tool_name,

                arguments=mcp_arguments

            )

            """

            # 🚧 For demonstration, we'll simulate the MCP response structure
            simulated_result = self._simulate_tavily_response(query, max_results)

            # πŸ”„ Process and validate MCP response
            processed_result = self._process_mcp_response(simulated_result, query)

            self.logger.info(
                f" MCP search completed: {processed_result.get('total_results', 0)} results"
            )
            return processed_result

        except Exception as e:
            self.logger.error(f" MCP Tavily search failed: {str(e)}")
            return {
                "query": query,
                "results": [],
                "total_results": 0,
                "error": str(e),
                "status": "mcp_error",
            }

    def _simulate_tavily_response(self, query: str, max_results: int) -> Dict[str, Any]:
        """

        Simulate Tavily API response for demonstration.



        In production, this would be replaced by actual MCP call results.

        """
        # 🚧 Simulated response structure matching Tavily API
        return {
            "query": query,
            "follow_up_questions": None,
            "answer": f"Based on web search for '{query}'...",
            "images": [],
            "results": [
                {
                    "title": f"Example Result 1 for {query}",
                    "url": "https://example.com/result1",
                    "content": f"This is example content related to {query}. It provides comprehensive information about the topic.",
                    "raw_content": f"Raw content for {query} with additional details...",
                    "published_date": "2024-01-15",
                    "score": 0.95,
                },
                {
                    "title": f"Example Result 2 for {query}",
                    "url": "https://example.com/result2",
                    "content": f"Another relevant result for {query} with different perspective and insights.",
                    "raw_content": f"Extended raw content for {query}...",
                    "published_date": "2024-01-14",
                    "score": 0.87,
                },
            ][:max_results],
            "response_time": 1.2,
        }

    def _process_mcp_response(

        self, mcp_result: Dict[str, Any], original_query: str

    ) -> Dict[str, Any]:
        """

        Process and validate MCP response from Tavily.



        Args:

            mcp_result: Raw MCP response

            original_query: Original search query



        Returns:

            Processed search results

        """
        try:
            # πŸ” Extract results from MCP response
            raw_results = mcp_result.get("results", [])

            # πŸ”„ Process each result
            processed_results = []
            for i, result in enumerate(raw_results):
                processed_result = {
                    "title": result.get("title", f"Web Result {i+1}"),
                    "url": result.get("url", ""),
                    "content": result.get("content", ""),
                    "raw_content": result.get("raw_content", ""),
                    "score": result.get("score", 0.0),
                    "published_date": result.get("published_date", ""),
                    "rank": i + 1,
                    "source": "tavily_web_search",
                    "search_engine": "tavily",
                    "metadata": {
                        "title": result.get("title", ""),
                        "url": result.get("url", ""),
                        "content_length": len(result.get("content", "")),
                        "has_raw_content": bool(result.get("raw_content")),
                        "search_rank": i + 1,
                        "published_date": result.get("published_date", ""),
                    },
                }
                processed_results.append(processed_result)

            # πŸ“Š Prepare final response
            return {
                "query": original_query,
                "results": processed_results,
                "total_results": len(processed_results),
                "answer": mcp_result.get("answer", ""),
                "follow_up_questions": mcp_result.get("follow_up_questions", []),
                "response_time": mcp_result.get("response_time", 0),
                "timestamp": datetime.now(),
                "status": "success",
                "source": "mcp_tavily",
            }

        except Exception as e:
            self.logger.error(f" Error processing MCP response: {str(e)}")
            return {
                "query": original_query,
                "results": [],
                "total_results": 0,
                "error": f"Response processing failed: {str(e)}",
                "status": "processing_error",
            }

    def test_connection(self) -> Dict[str, Any]:
        """

        Test MCP connection to Tavily.



        Returns:

            Connection test results

        """
        try:
            self.logger.info(" Testing MCP Tavily connection...")

            # πŸ” Simple test query
            test_result = self.search_web(
                query="test connection", max_results=1, search_depth="basic"
            )

            if test_result.get("status") == "success":
                return {
                    "status": "success",
                    "message": " MCP Tavily connection successful",
                    "server_name": self.server_name,
                    "tool_name": self.tool_name,
                    "response_time": test_result.get("response_time", 0),
                }
            else:
                return {
                    "status": "error",
                    "message": " MCP Tavily connection failed",
                    "error": test_result.get("error", "Unknown error"),
                }

        except Exception as e:
            self.logger.error(f" MCP connection test failed: {str(e)}")
            return {
                "status": "error",
                "message": " MCP connection test failed",
                "error": str(e),
            }

    def get_server_info(self) -> Dict[str, Any]:
        """

        Get MCP server information.



        Returns:

            Server information dictionary

        """
        return {
            "server_name": self.server_name,
            "tool_name": self.tool_name,
            "timeout": self.timeout,
            "status": "configured",
            "description": "MCP integration for Tavily web search API",
        }


# πŸ”§ Helper function for easy integration
def create_mcp_tavily_client(

    config: Optional[Dict[str, Any]] = None,

) -> MCPTavilyIntegration:
    """

    Create and configure MCP Tavily client.



    Args:

        config: Optional configuration dictionary



    Returns:

        Configured MCPTavilyIntegration instance

    """
    return MCPTavilyIntegration(config)


# πŸ“ Example usage and integration guide
if __name__ == "__main__":
    """

    Example usage of MCP Tavily Integration



    This demonstrates how to use the MCP integration in your RAG system.

    """

    # πŸ”§ Configure MCP client
    config = {
        "mcp_server_name": "tavily-mcp",
        "mcp_tool_name": "tavily-search",
        "timeout": 30,
    }

    # πŸš€ Create client
    mcp_client = create_mcp_tavily_client(config)

    # πŸ§ͺ Test connection
    connection_test = mcp_client.test_connection()
    print(f"Connection test: {connection_test}")

    # πŸ” Example search
    search_result = mcp_client.search_web(
        query="latest AI developments 2024",
        max_results=5,
        search_depth="basic",
        time_range="month",
    )

    print(f"Search results: {search_result.get('total_results', 0)} found")
    for result in search_result.get("results", []):
        print(f"- {result['title']}: {result['url']}")