Spaces:
Sleeping
Sleeping
File size: 21,025 Bytes
e0aa230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
"""
Query Router Module
This module intelligently routes queries between local document search
and live web search based on query analysis and user preferences.
Technology: Custom routing logic with RAG + Live Search integration
"""
import logging
import time
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime
from enum import Enum
class QueryType(Enum):
"""Enumeration of different query types for routing decisions."""
FACTUAL = "factual" # π Current facts, news, data
CONCEPTUAL = "conceptual" # π‘ Definitions, explanations
PROCEDURAL = "procedural" # π§ How-to, instructions
ANALYTICAL = "analytical" # π Analysis, comparisons
TEMPORAL = "temporal" # β° Time-sensitive information
HYBRID = "hybrid" # π Requires both sources
class QueryRouter:
"""
Intelligent query router that decides between local docs and live search.
Features:
- Query type classification
- Intelligent routing decisions
- Hybrid search coordination
- Result fusion and ranking
- Performance optimization
"""
def __init__(
self,
local_query_processor,
live_search_processor,
config: Optional[Dict[str, Any]] = None,
):
"""
Initialize the QueryRouter.
Args:
local_query_processor: Local document query processor
live_search_processor: Live web search processor
config: Configuration dictionary
"""
self.local_processor = local_query_processor
self.live_processor = live_search_processor
self.config = config or {}
self.logger = logging.getLogger(__name__)
# π― Routing configuration
self.enable_hybrid_search = self.config.get("enable_hybrid_search", True)
self.local_weight = self.config.get("local_weight", 0.6)
self.live_weight = self.config.get("live_weight", 0.4)
self.confidence_threshold = self.config.get("confidence_threshold", 0.5)
self.max_hybrid_results = self.config.get("max_hybrid_results", 10)
# π Analytics and caching
self.routing_history = []
self.routing_cache = {}
# π Query classification patterns
self._init_classification_patterns()
self.logger.info("QueryRouter initialized with intelligent routing")
def _init_classification_patterns(self):
"""Initialize patterns for query classification."""
self.temporal_keywords = {
"current",
"latest",
"recent",
"today",
"now",
"2025",
"breaking",
"news",
"update",
"trending",
"happening",
}
self.factual_keywords = {
"what is",
"who is",
"when did",
"where is",
"statistics",
"data",
"facts",
"numbers",
"rate",
"percentage",
}
self.procedural_keywords = {
"how to",
"steps",
"guide",
"tutorial",
"instructions",
"process",
"method",
"way to",
"procedure",
}
self.conceptual_keywords = {
"explain",
"definition",
"meaning",
"concept",
"theory",
"principle",
"idea",
"understand",
"clarify",
}
def route_query(
self,
query: str,
use_live_search: bool = False,
max_results: int = 5,
search_options: Optional[Dict[str, Any]] = None,
search_mode: str = "auto",
) -> Dict[str, Any]:
"""
Route query to appropriate search method(s) with enhanced control.
Args:
query: User query string
use_live_search: Enable live search (will use hybrid approach)
max_results: Maximum results to return
search_options: Additional search options
search_mode: Search mode - "auto", "local_only", "live_only", "hybrid"
Returns:
Dictionary with routed results and metadata
"""
if not query or not query.strip():
return {
"query": query,
"results": [],
"routing_decision": "error",
"error": "Empty query provided",
}
self.logger.info(f" Routing query: {query[:100]}...")
start_time = time.time()
try:
# π― Classify query type
query_type = self._classify_query(query)
# π Make routing decision with enhanced logic
routing_decision = self._make_enhanced_routing_decision(
query, query_type, use_live_search, search_mode
)
# π Execute search based on routing decision
if routing_decision == "local_only":
result = self._search_local_only(query, max_results)
elif routing_decision == "live_only":
result = self._search_live_only(query, max_results, search_options)
elif routing_decision == "hybrid":
result = self._search_hybrid(query, max_results, search_options)
else:
result = self._search_fallback(query, max_results)
# π Add routing metadata
result.update(
{
"query_type": query_type.value,
"routing_decision": routing_decision,
"processing_time": time.time() - start_time,
"timestamp": datetime.now(),
}
)
# π Track routing decision
self._track_routing_decision(query, query_type, routing_decision)
self.logger.info(
f" Query routed via {routing_decision} in {result['processing_time']:.2f}s"
)
return result
except Exception as e:
self.logger.error(f" Error in query routing: {str(e)}")
return {
"query": query,
"results": [],
"routing_decision": "error",
"error": str(e),
"processing_time": time.time() - start_time,
}
def _classify_query(self, query: str) -> QueryType:
"""
Classify query type for routing decisions.
Args:
query: Query string to classify
Returns:
QueryType enum value
"""
query_lower = query.lower()
# π Check for temporal indicators
if any(keyword in query_lower for keyword in self.temporal_keywords):
return QueryType.TEMPORAL
# π Check for factual queries
if any(keyword in query_lower for keyword in self.factual_keywords):
return QueryType.FACTUAL
# π§ Check for procedural queries
if any(keyword in query_lower for keyword in self.procedural_keywords):
return QueryType.PROCEDURAL
# π‘ Check for conceptual queries
if any(keyword in query_lower for keyword in self.conceptual_keywords):
return QueryType.CONCEPTUAL
# π Default to analytical for complex queries
if len(query.split()) > 10:
return QueryType.ANALYTICAL
# π Default to hybrid for uncertain cases
return QueryType.HYBRID
def _make_routing_decision(
self, query: str, query_type: QueryType, force_live: bool
) -> str:
"""
Make intelligent routing decision based on query analysis.
Args:
query: Query string
query_type: Classified query type
force_live: Whether to enable live search (not force only live)
Returns:
Routing decision string
"""
# π Smart hybrid approach when live search is enabled
if force_live:
# β¨ Instead of live_only, use hybrid to combine both sources
if query_type == QueryType.TEMPORAL:
return "hybrid" # β° Time-sensitive + stored context
else:
return "hybrid" # π― Always combine live + stored data
# π― Route based on query type (when live search is disabled)
if query_type == QueryType.TEMPORAL:
return "local_only" # β° Only stored data when live disabled
elif query_type == QueryType.FACTUAL:
return "local_only" # π Facts from stored documents
elif query_type == QueryType.PROCEDURAL:
return "local_only" # π§ Procedures likely in documents
elif query_type == QueryType.CONCEPTUAL:
return "local_only" # π‘ Concepts likely in documents
elif query_type == QueryType.ANALYTICAL:
return "local_only" # π Analysis from stored data
else: # QueryType.HYBRID
return "local_only" # π Default to local when live disabled
def _make_enhanced_routing_decision(
self, query: str, query_type: QueryType, use_live_search: bool, search_mode: str
) -> str:
"""
Enhanced routing decision with explicit search mode control.
Args:
query: Query string
query_type: Classified query type
use_live_search: Whether live search is enabled
search_mode: Explicit search mode preference
Returns:
Routing decision string
"""
# π― Explicit mode override - user ka choice priority
if search_mode == "local_only":
return "local_only"
elif search_mode == "live_only":
return "live_only" if self.live_processor.is_enabled() else "local_only"
elif search_mode == "hybrid":
return "hybrid" if self.live_processor.is_enabled() else "local_only"
# π§ Auto mode - intelligent decision making
elif search_mode == "auto":
return self._make_routing_decision(query, query_type, use_live_search)
# π Fallback to original logic
else:
return self._make_routing_decision(query, query_type, use_live_search)
def _search_local_only(self, query: str, max_results: int) -> Dict[str, Any]:
"""Search only local documents."""
self.logger.info(" Searching local documents only")
try:
local_result = self.local_processor.process_query(query)
# π Format results consistently
formatted_results = []
for item in local_result.get("context", [])[:max_results]:
formatted_results.append(
{
"title": f"Document: {item.get('source', 'Unknown')}",
"content": item.get("text", ""),
"score": item.get("score", 0.0),
"source": item.get("source", "local_document"),
"type": "local_document",
"metadata": item.get("metadata", {}),
}
)
return {
"query": query,
"results": formatted_results,
"total_results": len(formatted_results),
"sources": ["local_documents"],
"local_results": local_result.get("total_results", 0),
}
except Exception as e:
self.logger.error(f" Local search error: {str(e)}")
return {
"query": query,
"results": [],
"total_results": 0,
"error": f"Local search failed: {str(e)}",
}
def _search_live_only(
self, query: str, max_results: int, search_options: Optional[Dict[str, Any]]
) -> Dict[str, Any]:
"""Search only live web sources."""
self.logger.info(" Searching live web sources only")
try:
# π― Extract search options
options = search_options or {}
search_depth = options.get("search_depth", "basic")
time_range = options.get("time_range", "month")
live_result = self.live_processor.search_web(
query,
max_results=max_results,
search_depth=search_depth,
time_range=time_range,
)
return {
"query": query,
"results": live_result.get("results", []),
"total_results": live_result.get("total_results", 0),
"sources": ["live_web"],
"live_results": live_result.get("total_results", 0),
"search_params": live_result.get("search_params", {}),
}
except Exception as e:
self.logger.error(f" Live search error: {str(e)}")
return {
"query": query,
"results": [],
"total_results": 0,
"error": f"Live search failed: {str(e)}",
}
def _search_hybrid(
self, query: str, max_results: int, search_options: Optional[Dict[str, Any]]
) -> Dict[str, Any]:
"""Perform hybrid search combining local and live sources."""
self.logger.info(" Performing hybrid search")
try:
# π Calculate result distribution
local_count = int(max_results * self.local_weight)
live_count = max_results - local_count
# π Perform both searches concurrently (simplified sequential for now)
local_result = self.local_processor.process_query(query)
options = search_options or {}
live_result = self.live_processor.search_web(
query,
max_results=live_count,
search_depth=options.get("search_depth", "basic"),
time_range=options.get("time_range", "month"),
)
# π Combine and rank results
combined_results = self._fuse_results(
local_result, live_result, local_count, live_count
)
return {
"query": query,
"results": combined_results[:max_results],
"total_results": len(combined_results),
"sources": ["local_documents", "live_web"],
"local_results": local_result.get("total_results", 0),
"live_results": live_result.get("total_results", 0),
"fusion_method": "weighted_ranking",
}
except Exception as e:
self.logger.error(f" Hybrid search error: {str(e)}")
return self._search_fallback(query, max_results)
def _fuse_results(
self,
local_result: Dict[str, Any],
live_result: Dict[str, Any],
local_count: int,
live_count: int,
) -> List[Dict[str, Any]]:
"""
Fuse results from local and live searches.
Args:
local_result: Results from local search
live_result: Results from live search
local_count: Number of local results to include
live_count: Number of live results to include
Returns:
Fused and ranked results
"""
fused_results = []
# π Process local results
for item in local_result.get("context", [])[:local_count]:
fused_results.append(
{
"title": f"Document: {item.get('source', 'Unknown')}",
"content": item.get("text", ""),
"score": item.get("score", 0.0) * self.local_weight,
"source": item.get("source", "local_document"),
"type": "local_document",
"metadata": item.get("metadata", {}),
"fusion_score": item.get("score", 0.0) * self.local_weight,
}
)
# π Process live results
for item in live_result.get("results", [])[:live_count]:
fused_results.append(
{
"title": item.get("title", "Web Result"),
"content": item.get("content", ""),
"score": item.get("relevance_score", 0.0) * self.live_weight,
"source": item.get("url", "web_search"),
"type": "web_result",
"metadata": item.get("metadata", {}),
"fusion_score": item.get("relevance_score", 0.0) * self.live_weight,
}
)
# π Sort by fusion score
fused_results.sort(key=lambda x: x.get("fusion_score", 0), reverse=True)
return fused_results
def _search_fallback(self, query: str, max_results: int) -> Dict[str, Any]:
"""Fallback search method when other methods fail."""
self.logger.warning(" Using fallback search method")
try:
# π Try local search first
local_result = self.local_processor.process_query(query)
if local_result.get("context"):
return self._search_local_only(query, max_results)
else:
return {
"query": query,
"results": [],
"total_results": 0,
"sources": [],
"error": "No results found in fallback search",
}
except Exception as e:
self.logger.error(f" Fallback search failed: {str(e)}")
return {
"query": query,
"results": [],
"total_results": 0,
"error": f"All search methods failed: {str(e)}",
}
def _track_routing_decision(
self, query: str, query_type: QueryType, routing_decision: str
):
"""Track routing decisions for analytics."""
self.routing_history.append(
{
"query": query[:100], # Truncate for privacy
"query_type": query_type.value,
"routing_decision": routing_decision,
"timestamp": datetime.now(),
}
)
# π Keep only last 100 routing decisions
if len(self.routing_history) > 100:
self.routing_history = self.routing_history[-100:]
def get_routing_analytics(self) -> Dict[str, Any]:
"""
Get analytics about routing patterns.
Returns:
Dictionary with routing analytics
"""
if not self.routing_history:
return {
"total_queries": 0,
"routing_distribution": {},
"query_type_distribution": {},
}
total_queries = len(self.routing_history)
# π Calculate routing distribution
routing_counts = {}
query_type_counts = {}
for entry in self.routing_history:
routing = entry["routing_decision"]
query_type = entry["query_type"]
routing_counts[routing] = routing_counts.get(routing, 0) + 1
query_type_counts[query_type] = query_type_counts.get(query_type, 0) + 1
# π Convert to percentages
routing_distribution = {
k: round((v / total_queries) * 100, 1) for k, v in routing_counts.items()
}
query_type_distribution = {
k: round((v / total_queries) * 100, 1) for k, v in query_type_counts.items()
}
return {
"total_queries": total_queries,
"routing_distribution": routing_distribution,
"query_type_distribution": query_type_distribution,
"recent_decisions": [
{
"query": entry["query"][:50] + "...",
"type": entry["query_type"],
"routing": entry["routing_decision"],
}
for entry in self.routing_history[-5:]
],
}
def clear_cache(self):
"""Clear routing cache."""
self.routing_cache.clear()
self.logger.info(" Routing cache cleared")
def clear_history(self):
"""Clear routing history."""
self.routing_history.clear()
self.logger.info(" Routing history cleared")
|