File size: 21,537 Bytes
e0aa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
"""

Response Generator Module



This module is responsible for generating coherent responses based on

retrieved knowledge using LangChain RAG.



Technology: LangChain RAG (Retrieval Augmented Generation)

"""

import logging
import time
import os
from typing import Dict, List, Any, Optional
from datetime import datetime


class ResponseGenerator:
    """

    Generates coherent responses based on retrieved knowledge.



    Features:

    - Context-aware response generation

    - Source attribution and confidence scoring

    - Multiple LLM provider support (Gemini, OpenAI)

    - Response quality assessment

    - Template-based fallback generation

    """

    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """

        Initialize the ResponseGenerator with configuration.



        Args:

            config: Configuration dictionary with generation parameters

        """
        self.config = config or {}
        self.logger = logging.getLogger(__name__)

        # Configuration settings
        self.model = self.config.get("model", "gpt-3.5-turbo")
        self.max_tokens = self.config.get("max_tokens", 500)
        self.temperature = self.config.get("temperature", 0.7)
        self.include_sources = self.config.get("include_sources", True)

        # Initialize LLM providers
        self.llm = None
        self.gemini_client = None
        self.openai_client = None

        self._initialize_llm_providers()

        # Response templates with markdown formatting
        self.response_templates = {
            "no_context": "## ℹ️ No Information Available\n\nI don't have enough information to answer your question. Please try:\n\n- **Uploading relevant documents** using the Upload tab\n- **Adding URLs** using the Add URLs tab\n- **Enabling live search** for real-time web results",
            "error": "## ⚠️ Error Occurred\n\nI encountered an error while generating the response. Please try again.\n\nIf the problem persists, check your API keys in the Settings tab.",
            "insufficient_confidence": "## 🤔 Limited Confidence\n\nBased on the available information, I found some relevant content, but I'm **not confident enough** to provide a definitive answer.\n\n**Suggestions:**\n- Try rephrasing your question\n- Add more specific documents\n- Enable live search for additional context",
        }

        self.logger.info("ResponseGenerator initialized with advanced features")

    def _initialize_llm_providers(self):
        """Initialize available LLM providers with optimization."""
        try:
            # Try to initialize Gemini
            gemini_api_key = os.getenv("GEMINI_API_KEY")
            if gemini_api_key:
                try:
                    import google.generativeai as genai

                    # Check if settings manager has already initialized Gemini client
                    # This is an optimization to avoid recreating the client
                    from utils.settings_manager import SettingsManager

                    if (
                        hasattr(SettingsManager, "_gemini_client_cache")
                        and SettingsManager._gemini_client_cache is not None
                        and SettingsManager._gemini_client_key == gemini_api_key
                    ):

                        self.logger.info(
                            "Reusing existing Gemini client from settings manager"
                        )
                        genai_client = SettingsManager._gemini_client_cache
                    else:
                        # Configure new client
                        genai.configure(api_key=gemini_api_key)
                        genai_client = genai

                    # Create model instance
                    self.gemini_client = genai_client.GenerativeModel(
                        "gemini-2.5-flash-preview-05-20"
                    )
                    self.logger.info("Gemini client initialized")
                except ImportError:
                    self.logger.warning("Gemini SDK not available")
                except Exception as e:
                    self.logger.warning(f"Failed to initialize Gemini: {e}")

            # Try to initialize OpenAI
            openai_api_key = os.getenv("OPENAI_API_KEY")
            if openai_api_key:
                try:
                    import openai

                    self.openai_client = openai.OpenAI(api_key=openai_api_key)
                    self.logger.info("OpenAI client initialized")
                except ImportError:
                    self.logger.warning("OpenAI SDK not available")
                except Exception as e:
                    self.logger.warning(f"Failed to initialize OpenAI: {e}")

            # Try to initialize LangChain
            try:
                if self.gemini_client:
                    from langchain_google_genai import ChatGoogleGenerativeAI

                    self.llm = ChatGoogleGenerativeAI(
                        model="gemini-2.5-flash-preview-05-20",
                        temperature=self.temperature,
                        google_api_key=gemini_api_key,
                    )
                elif self.openai_client:
                    from langchain_openai import ChatOpenAI

                    self.llm = ChatOpenAI(
                        model=self.model,
                        temperature=self.temperature,
                        max_tokens=self.max_tokens,
                        openai_api_key=openai_api_key,
                    )

                if self.llm:
                    self.logger.info("LangChain LLM initialized")

            except ImportError:
                self.logger.warning("LangChain not available")
            except Exception as e:
                self.logger.warning(f"Failed to initialize LangChain: {e}")

        except Exception as e:
            self.logger.error(f"❌ Error initializing LLM providers: {e}")

    def generate_response(

        self, query: str, context: List[Dict[str, Any]]

    ) -> Dict[str, Any]:
        """

        Generate a response based on the query and retrieved context.



        Args:

            query: Original user query

            context: List of retrieved context items with text and metadata



        Returns:

            Dictionary containing the generated response and metadata

        """
        if not query:
            return {
                "response": "I need a question to answer.",
                "sources": [],
                "confidence": 0.0,
                "error": "No query provided",
            }

        if not context:
            return {
                "response": self.response_templates["no_context"],
                "sources": [],
                "confidence": 0.0,
                "error": "No context available",
            }

        self.logger.info(f"Generating response for query: {query[:100]}...")
        start_time = time.time()

        try:
            # Prepare context for generation
            formatted_context = self._format_context(context)

            # Calculate initial confidence based on context quality
            base_confidence = self._calculate_confidence(context)

            # Generate response using available LLM
            response_result = self._generate_with_llm(query, formatted_context)

            if not response_result["success"]:
                # Fallback to template-based generation
                response_result = self._fallback_generation(query, formatted_context)

            # Extract sources from context
            sources = self._extract_sources(context) if self.include_sources else []

            # Assess response quality
            quality_score = self._assess_response_quality(
                response_result["response"], query, context
            )

            # Calculate final confidence
            final_confidence = min(base_confidence * quality_score, 1.0)

            # Check if confidence is too low
            if final_confidence < 0.3:
                response_text = self.response_templates["insufficient_confidence"]
                final_confidence = 0.2
            else:
                response_text = response_result["response"]

            result = {
                "response": response_text,
                "sources": sources,
                "confidence": final_confidence,
                "context_items": len(context),
                "generation_time": time.time() - start_time,
                "model_used": response_result.get("model", "fallback"),
                "quality_score": quality_score,
            }

            self.logger.info(f"Response generated in {result['generation_time']:.2f}s")
            return result

        except Exception as e:
            self.logger.error(f"❌ Error generating response: {str(e)}")
            return {
                "response": self.response_templates["error"],
                "sources": [],
                "confidence": 0.0,
                "error": str(e),
                "generation_time": time.time() - start_time,
            }

    def _generate_with_llm(self, query: str, context: str) -> Dict[str, Any]:
        """

        Generate response using available LLM providers.



        Args:

            query: User query

            context: Formatted context string



        Returns:

            Dictionary with generation result

        """
        # Create RAG prompt
        prompt = self._create_rag_prompt(query, context)

        # Try LangChain first
        if self.llm:
            try:
                from langchain.schema import HumanMessage

                messages = [HumanMessage(content=prompt)]
                response = self.llm.invoke(messages)
                return {
                    "success": True,
                    "response": response.content,
                    "model": "langchain",
                }
            except Exception as e:
                self.logger.warning(f"LangChain generation failed: {e}")

        # Try Gemini directly
        if self.gemini_client:
            try:
                response = self.gemini_client.generate_content(prompt)
                return {
                    "success": True,
                    "response": response.text,
                    "model": "gemini-2.5-flash-preview-05-20",
                }
            except Exception as e:
                self.logger.warning(f"Gemini generation failed: {e}")

        # Try OpenAI directly
        if self.openai_client:
            try:
                response = self.openai_client.chat.completions.create(
                    model=self.model,
                    messages=[{"role": "user", "content": prompt}],
                    max_tokens=self.max_tokens,
                    temperature=self.temperature,
                )
                return {
                    "success": True,
                    "response": response.choices[0].message.content,
                    "model": self.model,
                }
            except Exception as e:
                self.logger.warning(f"OpenAI generation failed: {e}")

        return {"success": False, "response": "", "model": "none"}

    def _create_rag_prompt(self, query: str, context: str) -> str:
        """

        Create an enhanced prompt template for RAG generation with markdown formatting.



        Args:

            query: User query

            context: Formatted context



        Returns:

            Formatted prompt string

        """
        prompt = f"""You are an AI assistant that answers questions based on provided context. Follow these guidelines:



1. Answer the question using ONLY the information provided in the context

2. If the context doesn't contain enough information, clearly state this

3. Cite specific sources when making claims

4. Be concise but comprehensive

5. If multiple sources provide different information, acknowledge this

6. Use a professional and helpful tone

7. **Format your response in clean, readable Markdown**



Context Information:

{context}



Question: {query}



Instructions:

- Provide a clear, well-structured answer using **Markdown formatting**

- Use headers (##, ###) to organize sections

- Use **bold** for important points

- Use bullet points (-) or numbered lists (1.) for clarity

- Use `code blocks` for technical terms or specific data

- Include relevant details from the context

- If uncertain, express the level of confidence

- Do not make up information not present in the context



Format your response in Markdown with proper structure and formatting.



Answer:"""

        return prompt

    def _fallback_generation(self, query: str, context: str) -> Dict[str, Any]:
        """

        Fallback response generation when LLM is not available.



        Args:

            query: User query

            context: Formatted context



        Returns:

            Dictionary with generation result

        """
        self.logger.info("Using fallback generation")

        # Extract key information from context
        context_lines = context.split("\n")
        relevant_lines = [
            line.strip()
            for line in context_lines
            if line.strip() and not line.startswith("[Source:")
        ]

        if not relevant_lines:
            return {
                "success": True,
                "response": self.response_templates["no_context"],
                "model": "fallback",
            }

        # Create a structured markdown response
        response_parts = [
            f"## Answer to: {query}",
            "",
            "Based on the available information:",
            "",
        ]

        # Add key information as markdown list
        for i, line in enumerate(relevant_lines[:3]):  # Limit to 3 most relevant
            if len(line) > 50:  # Only include substantial content
                response_parts.append(f"- {line}")

        response_parts.extend(
            [
                "",
                "---",
                "",
                "**Note:** This response is generated using available context. For more detailed analysis, please ensure proper language model integration.",
            ]
        )

        response = "\n".join(response_parts)

        return {
            "success": True,
            "response": response,
            "model": "fallback",
        }

    def _format_context(self, context: List[Dict[str, Any]]) -> str:
        """

        Format the retrieved context for use in response generation.



        Args:

            context: List of context items



        Returns:

            Formatted context string

        """
        formatted_parts = []

        for i, item in enumerate(context):
            text = item.get("text", "")
            source = item.get("source", f"Source {i+1}")
            score = item.get("score", 0.0)

            # Format each context item with metadata
            formatted_part = f"""[Source {i+1}: {source} (Relevance: {score:.2f})]

{text}

---"""
            formatted_parts.append(formatted_part)

        return "\n\n".join(formatted_parts)

    def _extract_sources(self, context: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """

        Extract source information from context items.



        Args:

            context: List of context items



        Returns:

            List of source dictionaries

        """
        sources = []
        seen_sources = set()

        for item in context:
            source = item.get("source", "Unknown")
            score = item.get("score", 0.0)
            final_score = item.get("final_score", score)

            if source not in seen_sources:
                source_info = {
                    "source": source,
                    "relevance_score": round(score, 3),
                    "final_score": round(final_score, 3),
                    "metadata": item.get("metadata", {}),
                }

                # Add source type
                if source.endswith(".pdf"):
                    source_info["type"] = "PDF Document"
                elif source.startswith("http"):
                    source_info["type"] = "Web Page"
                elif source.endswith((".docx", ".doc")):
                    source_info["type"] = "Word Document"
                else:
                    source_info["type"] = "Document"

                sources.append(source_info)
                seen_sources.add(source)

        # Sort by relevance score
        sources.sort(key=lambda x: x["final_score"], reverse=True)
        return sources

    def _calculate_confidence(self, context: List[Dict[str, Any]]) -> float:
        """

        Calculate confidence score based on context quality.



        Args:

            context: List of context items



        Returns:

            Confidence score between 0.0 and 1.0

        """
        if not context:
            return 0.0

        # Calculate average similarity score
        scores = [item.get("final_score", item.get("score", 0.0)) for item in context]
        avg_score = sum(scores) / len(scores)

        # Factor in the number of context items
        context_factor = min(len(context) / 3.0, 1.0)  # Normalize to max of 3 items

        # Factor in score distribution (prefer consistent scores)
        if len(scores) > 1:
            score_variance = sum((s - avg_score) ** 2 for s in scores) / len(scores)
            consistency_factor = max(0.5, 1.0 - score_variance)
        else:
            consistency_factor = 1.0

        # Combine factors
        confidence = (
            (avg_score * 0.6) + (context_factor * 0.2) + (consistency_factor * 0.2)
        )

        return min(confidence, 1.0)

    def _assess_response_quality(

        self, response: str, query: str, context: List[Dict[str, Any]]

    ) -> float:
        """

        Assess the quality of the generated response.



        Args:

            response: Generated response

            query: Original query

            context: Context used for generation



        Returns:

            Quality score between 0.0 and 1.0

        """
        if not response or len(response.strip()) < 10:
            return 0.1

        quality_score = 0.5  # Base score

        # Check response length (not too short, not too long)
        response_length = len(response)
        if 50 <= response_length <= 1000:
            quality_score += 0.2
        elif response_length > 1000:
            quality_score += 0.1

        # Check if response addresses the query
        query_words = set(query.lower().split())
        response_words = set(response.lower().split())
        word_overlap = len(query_words.intersection(response_words))
        if word_overlap > 0:
            quality_score += min(word_overlap / len(query_words), 0.2)

        # Check if response uses context information
        context_texts = [item.get("text", "") for item in context]
        context_words = set()
        for text in context_texts:
            context_words.update(text.lower().split())

        context_usage = len(response_words.intersection(context_words))
        if context_usage > 5:  # Uses substantial context
            quality_score += 0.1

        return min(quality_score, 1.0)

    def get_supported_models(self) -> List[str]:
        """

        Get list of supported models.



        Returns:

            List of available model names

        """
        models = ["fallback"]

        if self.gemini_client:
            models.extend(["gemini-2.5-flash-preview-05-20", "gemini-1.5-pro"])

        if self.openai_client:
            models.extend(["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo"])

        return models

    def update_model(self, model_name: str) -> bool:
        """

        Update the model used for generation.



        Args:

            model_name: Name of the model to use



        Returns:

            True if model was updated successfully

        """
        try:
            if model_name in self.get_supported_models():
                self.model = model_name
                self.logger.info(f"Model updated to: {model_name}")
                return True
            else:
                self.logger.warning(f"Model {model_name} not supported")
                return False
        except Exception as e:
            self.logger.error(f"❌ Error updating model: {e}")
            return False

    def get_generation_stats(self) -> Dict[str, Any]:
        """

        Get statistics about response generation.



        Returns:

            Dictionary with generation statistics

        """
        return {
            "supported_models": self.get_supported_models(),
            "current_model": self.model,
            "gemini_available": self.gemini_client is not None,
            "openai_available": self.openai_client is not None,
            "langchain_available": self.llm is not None,
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
        }