File size: 25,610 Bytes
e0aa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
"""

Vector Database Module



This module is responsible for storing and indexing vector embeddings

for efficient retrieval using Pinecone with complete functionality.



Technology: Pinecone

"""

import logging
import os
import time
import uuid
import hashlib
from datetime import datetime
from typing import Dict, List, Any, Optional, Union

# Import Pinecone and related libraries
try:
    import pinecone
    from pinecone import Pinecone, ServerlessSpec
except ImportError as e:
    logging.warning(f"Pinecone library not installed: {e}")

from utils.error_handler import VectorStorageError, error_handler, ErrorType


class VectorDB:
    """

    Stores and indexes vector embeddings for efficient retrieval using Pinecone with full functionality.



    Features:

    - Complete Pinecone integration

    - Index management (create, update, delete)

    - Batch upsert operations with optimization

    - Advanced similarity search with metadata filtering

    - Statistics and monitoring

    """

    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """

        Initialize the VectorDB with configuration.



        Args:

            config: Configuration dictionary with Pinecone parameters

        """
        self.config = config or {}
        self.logger = logging.getLogger(__name__)

        # Configuration settings
        self.api_key = self.config.get("api_key", os.environ.get("PINECONE_API_KEY"))
        self.environment = self.config.get("environment", "us-west1-gcp")
        self.index_name = self.config.get("index_name", "rag-ai-index")
        self.dimension = self.config.get(
            "dimension", 3072
        )  # ✅ Fixed: Match Gemini embedding dimension
        self.metric = self.config.get("metric", "cosine")
        self.batch_size = self.config.get("batch_size", 100)

        # Performance settings
        self.max_metadata_size = self.config.get(
            "max_metadata_size", 40960
        )  # 40KB limit
        self.upsert_timeout = self.config.get("upsert_timeout", 60)
        self.query_timeout = self.config.get("query_timeout", 30)

        # Statistics tracking
        self.stats = {
            "vectors_stored": 0,
            "vectors_queried": 0,
            "vectors_deleted": 0,
            "batch_operations": 0,
            "failed_operations": 0,
            "start_time": datetime.now(),
        }

        # Initialize Pinecone client
        self.pc = None
        self.index = None
        self._initialize_client()

    def _initialize_client(self):
        """Initialize Pinecone client and index with validation."""
        if not self.api_key:
            self.logger.warning(
                "No Pinecone API key provided. Vector storage will not be available."
            )
            return

        try:
            # Initialize Pinecone client
            self.pc = Pinecone(api_key=self.api_key)

            # Check if index exists, create if not
            self._ensure_index_exists()

            # Connect to index
            self.index = self.pc.Index(self.index_name)

            # Test connection
            self._test_connection()

            self.logger.info(
                f"Pinecone client initialized successfully with index: {self.index_name}"
            )

        except Exception as e:
            self.logger.error(f" Failed to initialize Pinecone client: {str(e)}")
            self.pc = None
            self.index = None

    def _ensure_index_exists(self):
        """Ensure the Pinecone index exists, create if necessary."""
        try:
            # List existing indexes
            existing_indexes = [index.name for index in self.pc.list_indexes()]

            if self.index_name not in existing_indexes:
                self.logger.info(f"Creating new Pinecone index: {self.index_name}")

                # Create index with serverless spec
                self.pc.create_index(
                    name=self.index_name,
                    dimension=self.dimension,
                    metric=self.metric,
                    spec=ServerlessSpec(cloud="aws", region=self.environment),
                )

                # Wait for index to be ready
                self._wait_for_index_ready()

                self.logger.info(f"Index {self.index_name} created successfully")
            else:
                self.logger.info(f"Index {self.index_name} already exists")

        except Exception as e:
            raise VectorStorageError(f"Failed to ensure index exists: {str(e)}")

    def _wait_for_index_ready(self, max_wait_time: int = 300):
        """Wait for index to be ready for operations."""
        start_time = time.time()

        while time.time() - start_time < max_wait_time:
            try:
                index_stats = self.pc.describe_index(self.index_name)
                if index_stats.status.ready:
                    self.logger.info(f"Index {self.index_name} is ready")
                    return

                self.logger.info(f"Waiting for index to be ready...")
                time.sleep(10)

            except Exception as e:
                self.logger.warning(f"Error checking index status: {str(e)}")
                time.sleep(5)

        raise VectorStorageError(
            f"Index {self.index_name} not ready after {max_wait_time}s"
        )

    def _test_connection(self):
        """Test connection to Pinecone index."""
        try:
            # Get index stats
            stats = self.index.describe_index_stats()
            self.logger.info(f"Connection test successful. Index stats: {stats}")

        except Exception as e:
            raise VectorStorageError(f"Connection test failed: {str(e)}")

    @error_handler(ErrorType.VECTOR_STORAGE)
    def store_embeddings(self, items: List[Dict[str, Any]]) -> bool:
        """

        Store embeddings in the vector database with full functionality.



        Args:

            items: List of dictionaries containing content, metadata, and embeddings



        Returns:

            True if successful, False otherwise

        """
        if not self.index or not items:
            self.logger.warning("No index available or empty items list")
            return False

        # Filter and validate items
        valid_items = self._validate_items(items)
        if not valid_items:
            self.logger.warning("No valid embeddings to store")
            return False

        self.logger.info(f"Storing {len(valid_items)} embeddings in Pinecone")
        start_time = time.time()

        try:
            # Process in batches
            total_batches = (len(valid_items) + self.batch_size - 1) // self.batch_size
            successful_batches = 0

            for i in range(0, len(valid_items), self.batch_size):
                batch_num = (i // self.batch_size) + 1
                batch = valid_items[i : i + self.batch_size]

                self.logger.info(
                    f"Processing batch {batch_num}/{total_batches} ({len(batch)} vectors)"
                )

                success = self._store_batch(batch)
                if success:
                    successful_batches += 1
                    self.stats["vectors_stored"] += len(batch)
                else:
                    self.stats["failed_operations"] += 1
                    self.logger.error(f" Batch {batch_num} failed")

                # Rate limiting between batches
                if i + self.batch_size < len(valid_items):
                    time.sleep(0.1)

            self.stats["batch_operations"] += total_batches
            processing_time = time.time() - start_time

            success_rate = successful_batches / total_batches * 100
            self.logger.info(
                f"Storage completed: {successful_batches}/{total_batches} batches successful ({success_rate:.1f}%) in {processing_time:.2f}s"
            )

            return successful_batches > 0

        except Exception as e:
            self.stats["failed_operations"] += 1
            raise VectorStorageError(f"Failed to store embeddings: {str(e)}")

    def _validate_items(self, items: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """

        Validate and prepare items for storage.



        Args:

            items: List of items to validate



        Returns:

            List of valid items

        """
        valid_items = []

        for i, item in enumerate(items):
            try:
                # Check required fields
                if not isinstance(item, dict):
                    self.logger.warning(f"Item {i} is not a dictionary")
                    continue

                if "embedding" not in item or not item["embedding"]:
                    self.logger.warning(f"Item {i} missing embedding")
                    continue

                embedding = item["embedding"]
                if not isinstance(embedding, list) or len(embedding) != self.dimension:
                    self.logger.warning(
                        f"Item {i} has invalid embedding dimension: {len(embedding)} != {self.dimension}"
                    )
                    continue

                # Prepare item
                processed_item = self._prepare_item_for_storage(item, i)
                valid_items.append(processed_item)

            except Exception as e:
                self.logger.warning(f"Error validating item {i}: {str(e)}")
                continue

        return valid_items

    def _prepare_item_for_storage(

        self, item: Dict[str, Any], index: int

    ) -> Dict[str, Any]:
        """

        Prepare item for Pinecone storage.



        Args:

            item: Item to prepare

            index: Item index for ID generation



        Returns:

            Prepared item

        """
        # 🆔 Generate unique ID
        item_id = item.get("id")
        if not item_id:
            # Create ID from content hash + timestamp
            content = item.get("content", "")
            timestamp = str(int(time.time() * 1000))
            content_hash = hashlib.md5(content.encode()).hexdigest()[:8]
            item_id = f"doc_{content_hash}_{timestamp}_{index}"

        # Prepare metadata
        metadata = item.get("metadata", {}).copy()

        # Add essential fields to metadata
        metadata.update(
            {
                "content_preview": item.get("content", "")[:500],  # First 500 chars
                "content_length": len(item.get("content", "")),
                "stored_at": datetime.now().isoformat(),
                "source": item.get("source", "unknown"),
                "document_type": item.get("document_type", "text"),
            }
        )

        # Ensure metadata size limit
        metadata = self._truncate_metadata(metadata)

        return {"id": item_id, "values": item["embedding"], "metadata": metadata}

    def _truncate_metadata(self, metadata: Dict[str, Any]) -> Dict[str, Any]:
        """

        Truncate metadata to fit Pinecone size limits.



        Args:

            metadata: Original metadata



        Returns:

            Truncated metadata

        """
        import json

        # 📏 Check current size
        metadata_str = json.dumps(metadata, default=str)
        if len(metadata_str.encode()) <= self.max_metadata_size:
            return metadata

        # Truncate large fields
        truncated = metadata.copy()

        # Truncate text fields progressively
        text_fields = ["content_preview", "text", "description", "summary"]
        for field in text_fields:
            if field in truncated:
                while (
                    len(json.dumps(truncated, default=str).encode())
                    > self.max_metadata_size
                ):
                    current_length = len(str(truncated[field]))
                    if current_length <= 50:
                        break
                    truncated[field] = (
                        str(truncated[field])[: current_length // 2] + "..."
                    )

        return truncated

    def _store_batch(self, batch: List[Dict[str, Any]]) -> bool:
        """

        Store a batch of embeddings in Pinecone.



        Args:

            batch: List of prepared items



        Returns:

            True if successful

        """
        try:
            # Upsert vectors to Pinecone
            upsert_response = self.index.upsert(
                vectors=batch, timeout=self.upsert_timeout
            )

            # Verify upsert success
            if hasattr(upsert_response, "upserted_count"):
                expected_count = len(batch)
                actual_count = upsert_response.upserted_count

                if actual_count != expected_count:
                    self.logger.warning(
                        f"Upsert count mismatch: {actual_count}/{expected_count}"
                    )
                    return False

            self.logger.info(f"Successfully stored batch of {len(batch)} vectors")
            return True

        except Exception as e:
            self.logger.error(f" Error storing batch: {str(e)}")
            return False

    @error_handler(ErrorType.VECTOR_STORAGE)
    def search(

        self,

        query_embedding: List[float],

        top_k: int = 5,

        filter: Optional[Dict[str, Any]] = None,

        include_metadata: bool = True,

        include_values: bool = False,

    ) -> List[Dict[str, Any]]:
        """

        Search for similar vectors with advanced filtering.



        Args:

            query_embedding: Query vector to search for

            top_k: Number of results to return

            filter: Optional metadata filter

            include_metadata: Whether to include metadata in results

            include_values: Whether to include vector values in results



        Returns:

            List of search results with scores and metadata

        """
        if not self.index or not query_embedding:
            self.logger.warning("No index available or empty query embedding")
            return []

        # Validate query embedding
        if len(query_embedding) != self.dimension:
            raise VectorStorageError(
                f"Query embedding dimension {len(query_embedding)} != {self.dimension}"
            )

        self.logger.info(f"Searching for similar vectors (top_k={top_k})")
        start_time = time.time()

        try:
            # Perform similarity search
            search_response = self.index.query(
                vector=query_embedding,
                top_k=top_k,
                filter=filter,
                include_metadata=include_metadata,
                include_values=include_values,
                timeout=self.query_timeout,
            )

            # Process results
            results = []
            if hasattr(search_response, "matches"):
                for match in search_response.matches:
                    result = {
                        "id": match.id,
                        "score": float(match.score),
                    }

                    if include_metadata and hasattr(match, "metadata"):
                        result["metadata"] = (
                            dict(match.metadata) if match.metadata else {}
                        )

                    if include_values and hasattr(match, "values"):
                        result["values"] = match.values

                    results.append(result)

            self.stats["vectors_queried"] += len(results)
            search_time = time.time() - start_time

            self.logger.info(
                f"Search completed: {len(results)} results in {search_time:.3f}s"
            )
            return results

        except Exception as e:
            self.stats["failed_operations"] += 1
            raise VectorStorageError(f"Search failed: {str(e)}")

    @error_handler(ErrorType.VECTOR_STORAGE)
    def delete(

        self,

        ids: Optional[List[str]] = None,

        filter: Optional[Dict[str, Any]] = None,

        delete_all: bool = False,

    ) -> bool:
        """

        Delete vectors from the database.



        Args:

            ids: Optional list of vector IDs to delete

            filter: Optional metadata filter for vectors to delete

            delete_all: Whether to delete all vectors



        Returns:

            True if successful

        """
        if not self.index:
            self.logger.warning("No index available")
            return False

        try:
            if delete_all:
                # Delete all vectors
                self.index.delete(delete_all=True)
                self.logger.info("Deleted all vectors from index")
                self.stats["vectors_deleted"] += 1  # Approximate

            elif ids:
                # Delete by IDs
                self.index.delete(ids=ids)
                self.logger.info(f"Deleted {len(ids)} vectors by ID")
                self.stats["vectors_deleted"] += len(ids)

            elif filter:
                # Delete by filter
                self.index.delete(filter=filter)
                self.logger.info(f"Deleted vectors by filter: {filter}")
                self.stats["vectors_deleted"] += 1  # Approximate

            else:
                self.logger.warning("No deletion criteria provided")
                return False

            return True

        except Exception as e:
            self.stats["failed_operations"] += 1
            raise VectorStorageError(f"Delete operation failed: {str(e)}")

    def get_index_stats(self) -> Dict[str, Any]:
        """

        Get comprehensive index statistics.



        Returns:

            Dictionary with index statistics

        """
        if not self.index:
            return {}

        try:
            # Get Pinecone index stats
            pinecone_stats = self.index.describe_index_stats()

            # Combine with internal stats
            runtime = datetime.now() - self.stats["start_time"]

            return {
                "pinecone_stats": {
                    "total_vector_count": pinecone_stats.total_vector_count,
                    "dimension": pinecone_stats.dimension,
                    "index_fullness": pinecone_stats.index_fullness,
                    "namespaces": (
                        dict(pinecone_stats.namespaces)
                        if pinecone_stats.namespaces
                        else {}
                    ),
                },
                "internal_stats": {
                    **self.stats,
                    "runtime_seconds": runtime.total_seconds(),
                    "avg_vectors_per_batch": (
                        self.stats["vectors_stored"]
                        / max(1, self.stats["batch_operations"])
                    ),
                    "success_rate": (
                        (
                            self.stats["batch_operations"]
                            - self.stats["failed_operations"]
                        )
                        / max(1, self.stats["batch_operations"])
                        * 100
                    ),
                },
                "configuration": {
                    "index_name": self.index_name,
                    "dimension": self.dimension,
                    "metric": self.metric,
                    "batch_size": self.batch_size,
                },
            }

        except Exception as e:
            self.logger.error(f" Error getting index stats: {str(e)}")
            return {"error": str(e)}

    def health_check(self) -> Dict[str, Any]:
        """

        Perform health check on the vector database.



        Returns:

            Health check results

        """
        health = {
            "status": "unknown",
            "timestamp": datetime.now().isoformat(),
            "checks": {},
        }

        try:
            # Check API connection
            if self.pc:
                health["checks"]["api_connection"] = "Connected"
            else:
                health["checks"]["api_connection"] = " Not connected"
                health["status"] = "unhealthy"
                return health

            # Check index availability
            if self.index:
                health["checks"]["index_available"] = "Available"
            else:
                health["checks"]["index_available"] = " Not available"
                health["status"] = "unhealthy"
                return health

            # Test query operation
            try:
                test_vector = [0.1] * self.dimension
                self.index.query(vector=test_vector, top_k=1, timeout=5)
                health["checks"]["query_operation"] = "Working"
            except Exception as e:
                health["checks"]["query_operation"] = f" Failed: {str(e)}"
                health["status"] = "degraded"

            # Check index stats
            try:
                stats = self.index.describe_index_stats()
                health["checks"]["index_stats"] = f"{stats.total_vector_count} vectors"
            except Exception as e:
                health["checks"]["index_stats"] = f" Failed: {str(e)}"

            # 🎯 Overall status
            if health["status"] == "unknown":
                health["status"] = "healthy"

        except Exception as e:
            health["status"] = "unhealthy"
            health["error"] = str(e)

        return health

    def reset_stats(self):
        """Reset internal statistics."""
        self.stats = {
            "vectors_stored": 0,
            "vectors_queried": 0,
            "vectors_deleted": 0,
            "batch_operations": 0,
            "failed_operations": 0,
            "start_time": datetime.now(),
        }
        self.logger.info("Statistics reset")

    def get_stats(self) -> Dict[str, Any]:
        """

        Get simplified stats for UI display.



        Returns:

            Dictionary with basic statistics

        """
        try:
            if not self.index:
                return {"total_vectors": 0, "status": "disconnected"}

            # Get Pinecone stats
            pinecone_stats = self.index.describe_index_stats()

            return {
                "total_vectors": pinecone_stats.total_vector_count,
                "dimension": pinecone_stats.dimension,
                "index_fullness": pinecone_stats.index_fullness,
                "status": "connected",
            }
        except Exception as e:
            self.logger.warning(f"Could not get stats: {e}")
            return {"total_vectors": 0, "status": "error", "error": str(e)}

    def get_unique_sources(self) -> List[Dict[str, Any]]:
        """

        Get unique sources from stored vectors.



        Returns:

            List of unique sources with metadata

        """
        try:
            if not self.index:
                return []

            # This is a simplified approach - in a real implementation,
            # you might want to maintain a separate metadata index
            # For now, we'll return mock data based on what might be stored

            # Try to get some sample vectors to extract sources
            test_vector = [0.1] * self.dimension
            results = self.index.query(
                vector=test_vector,
                top_k=100,  # Get more results to find unique sources
                include_metadata=True,
            )

            sources = {}
            for match in results.matches:
                if hasattr(match, "metadata") and match.metadata:
                    source = match.metadata.get("source", "Unknown")
                    if source not in sources:
                        sources[source] = {
                            "source": source,
                            "chunk_count": 1,
                            "added_date": match.metadata.get("stored_at", "Unknown"),
                        }
                    else:
                        sources[source]["chunk_count"] += 1

            return list(sources.values())

        except Exception as e:
            self.logger.warning(f"Could not get unique sources: {e}")
            return []

    def list_documents(self) -> List[Dict[str, Any]]:
        """

        List all documents in the vector database.



        Returns:

            List of document information

        """
        try:
            # Get unique sources and format as documents
            sources = self.get_unique_sources()
            documents = []

            for source_info in sources:
                documents.append(
                    {
                        "name": source_info["source"],
                        "chunks": source_info["chunk_count"],
                        "date": source_info["added_date"],
                    }
                )

            return documents

        except Exception as e:
            self.logger.warning(f"Could not list documents: {e}")
            return []