File size: 148,899 Bytes
e0aa230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
"""

Gradio UI Module



This module provides an intuitive interface for document upload,

URL input, and querying using Gradio.



Technology: Gradio

"""

import logging
import os
import sys
import tempfile
import json
import time
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime
from pathlib import Path

try:
    import gradio as gr
except ImportError:
    logging.warning("Gradio not available.")


class GradioApp:
    """

    Provides a comprehensive Gradio-based user interface for the RAG system.



    Features:

    - Document upload with progress tracking

    - URL processing with status updates

    - Interactive Q&A interface with source display

    - Knowledge base management

    - System status and health monitoring

    - Analytics dashboard

    """

    def __init__(self, rag_system, config: Optional[Dict[str, Any]] = None):
        """

        Initialize the GradioApp with the RAG system.



        Args:

            rag_system: Instance of the complete RAG system

            config: Configuration dictionary with UI parameters

        """
        self.rag_system = rag_system
        self.config = config or {}
        self.logger = self._setup_unicode_logger()

        # 🔧 Initialize settings manager
        from utils.settings_manager import SettingsManager

        config_manager = getattr(rag_system, "config_manager", None)
        self.settings_manager = SettingsManager(config_manager)

        # UI Configuration
        self.title = self.config.get("title", "AI Embedded Knowledge Agent")
        self.description = self.config.get(
            "description",
            "Upload documents or provide URLs to build your knowledge base, then ask questions!",
        )
        self.theme = self.config.get("theme", "default")
        self.share = self.config.get("share", False)

        # Features configuration
        self.features = self.config.get("features", {})
        self.enable_file_upload = self.features.get("file_upload", True)
        self.enable_url_input = self.features.get("url_input", True)
        self.enable_query_interface = self.features.get("query_interface", True)
        self.enable_source_display = self.features.get("source_display", True)
        self.enable_confidence_display = self.features.get("confidence_display", True)

        # State management
        self.processing_status = "Ready"
        self.total_documents = 0
        self.total_chunks = 0
        self.query_count = 0

        # Initialize interface
        self.interface = None
        self._create_interface()

        self._log_safe("GradioApp initialized with advanced features")

    def _setup_unicode_logger(self):
        """🔧 Setup Unicode-safe logger for cross-platform compatibility."""
        logger = logging.getLogger(__name__)

        # ✅ Configure handler with UTF-8 encoding for Windows compatibility
        if not logger.handlers:
            handler = logging.StreamHandler(sys.stdout)

            # 🌍 Force UTF-8 encoding on Windows to handle emojis
            if sys.platform.startswith("win"):
                try:
                    # ⚡ Try to reconfigure stdout with UTF-8 encoding
                    handler.stream = open(
                        sys.stdout.fileno(), mode="w", encoding="utf-8", buffering=1
                    )
                except Exception:
                    # 🔄 Fallback to default if reconfiguration fails
                    pass

            formatter = logging.Formatter(
                "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
            )
            handler.setFormatter(formatter)
            logger.addHandler(handler)
            logger.setLevel(logging.INFO)

        return logger

    def _log_safe(self, message: str, level: str = "info"):
        """🛡️ Unicode-safe logging that handles emojis on Windows."""
        try:
            # ✅ Pre-process message to be safe for Windows cp1252 encoding
            safe_message = self._make_message_safe(message)
            getattr(self.logger, level)(safe_message)
        except UnicodeEncodeError:
            # 🔄 Additional fallback: Remove all non-ASCII characters
            ascii_message = message.encode("ascii", "ignore").decode("ascii")
            getattr(self.logger, level)(f"[ENCODING_SAFE] {ascii_message}")
        except Exception as e:
            # 🚨 Last resort: Basic logging without special characters
            basic_message = (
                str(message).replace("🌐", "[LIVE]").replace("📚", "[LOCAL]")
            )
            try:
                getattr(self.logger, level)(f"[SAFE] {basic_message}")
            except:
                print(f"[FALLBACK] {basic_message}")  # Direct print as last resort

    def _make_message_safe(self, message: str) -> str:
        """🔄 Convert emoji characters to safe text equivalents."""
        emoji_map = {
            "🔍": "[SEARCH]",
            "✅": "[SUCCESS]",
            "❌": "[ERROR]",
            "🚀": "[ROCKET]",
            "📄": "[DOC]",
            "🔗": "[LINK]",
            "⚡": "[FAST]",
            "🎯": "[TARGET]",
            "🟢": "[GREEN]",
            "🟡": "[YELLOW]",
            "🔴": "[RED]",
            "📊": "[CHART]",
            "🕷️": "[SPIDER]",
            "💡": "[IDEA]",
            "🔄": "[REFRESH]",
            "📚": "[BOOKS]",
            "🩺": "[HEALTH]",
            "📈": "[ANALYTICS]",
            "🌐": "[LIVE]",
            "🌍": "[WORLD]",
            "🔧": "[TOOL]",
            "🛡️": "[SHIELD]",
            "🎨": "[DESIGN]",
            "📝": "[NOTE]",
            "🗑️": "[DELETE]",
            "💾": "[SAVE]",
            "📁": "[FOLDER]",
            "🔔": "[BELL]",
            "⚙️": "[SETTINGS]",
            "🧪": "[TEST]",
            "📤": "[EXPORT]",
            "🔌": "[PORT]",
            "🌲": "[TREE]",
            "🔥": "[FIRE]",
            "🔑": "[KEY]",
            "🛠️": "[WRENCH]",
            "💻": "[COMPUTER]",
            "🏗️": "[BUILDING]",
            "❓": "[QUESTION]",
            "🪲": "[BUG]",
            "🪃": "[BOOMERANG]",
            "📘": "[BOOK]",
            "🧹": "[BROOM]",
            "🔬": "[MICROSCOPE]",
            "🤖": "[ROBOT]",  # Added for Auto mode
            "🔄": "[HYBRID]",  # Added for Hybrid mode
        }

        safe_message = message
        for emoji, replacement in emoji_map.items():
            safe_message = safe_message.replace(emoji, replacement)

        return safe_message

    def _create_interface(self):
        """🎨 Create the modern full-width Gradio interface."""
        # 🌟 Use modern theme with custom CSS
        theme = gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="purple",
            neutral_hue="slate",
            font=gr.themes.GoogleFont("Inter"),
            font_mono=gr.themes.GoogleFont("JetBrains Mono"),
        ).set(
            body_background_fill="*neutral_50",
            body_text_color="*neutral_800",
            button_primary_background_fill="linear-gradient(135deg, #667eea 0%, #764ba2 100%)",
            button_primary_background_fill_hover="linear-gradient(135deg, #5a67d8 0%, #6b46c1 100%)",
            button_primary_text_color="white",
            input_background_fill="*neutral_50",
            block_background_fill="white",
            block_border_width="1px",
            block_border_color="*neutral_200",
            block_radius="12px",
            container_radius="20px",
        )

        with gr.Blocks(
            title=self.title,
            theme=theme,
            css=self._get_custom_css(),
            head="""

            <meta name="viewport" content="width=device-width, initial-scale=1.0">

            <link rel="preconnect" href="https://fonts.googleapis.com">

            <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

            <link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap" rel="stylesheet">

            """,
        ) as interface:

            # 🎯 Modern Header with Gradient Background
            with gr.Row(elem_classes="app-header"):
                with gr.Column():
                    gr.HTML(
                        f"""

                    <div class="app-title">🚀 {self.title}</div>

                    <div class="app-description">{self.description}</div>

                    """
                    )

            # 📊 Enhanced Status Bar with Modern Design
            with gr.Row(elem_classes="status-bar"):
                with gr.Column():
                    status_display = gr.HTML(
                        value="""

                        <div class="status-item">

                            <span class="status-icon">🟢</span>

                            <span><strong>System Status:</strong> Ready</span>

                        </div>

                        """,
                        elem_classes="status-display",
                    )
                with gr.Column():
                    stats_display = gr.HTML(
                        value="""

                        <div class="status-item">

                            <span class="status-icon">📊</span>

                            <span><strong>Stats:</strong> Documents: 0 | Chunks: 0 | Queries: 0</span>

                        </div>

                        """,
                        elem_classes="stats-display",
                    )

            # Store interface components for updates early
            self.status_display = status_display
            self.stats_display = stats_display

            # 🎨 Modern Interface Tabs with Enhanced Styling
            with gr.Tabs(elem_classes="tab-nav") as tabs:
                # 📄 Document Upload Tab
                if self.enable_file_upload:
                    with gr.TabItem(
                        "📄 Upload Documents", id="upload_tab", elem_classes="tab-item"
                    ):
                        with gr.Column(elem_classes="feature-card fade-in"):
                            upload_components = self._create_upload_tab()

                # 🔗 URL Processing Tab
                if self.enable_url_input:
                    with gr.TabItem(
                        "🔗 Add URLs", id="url_tab", elem_classes="tab-item"
                    ):
                        with gr.Column(elem_classes="feature-card fade-in"):
                            url_components = self._create_url_tab()

                # ❓ Query Interface Tab (Primary Tab)
                if self.enable_query_interface:
                    with gr.TabItem(
                        "❓ Ask Questions", id="query_tab", elem_classes="tab-item"
                    ):
                        with gr.Column(elem_classes="feature-card fade-in"):
                            query_components = self._create_query_tab()

                # 📚 Knowledge Base Management Tab
                with gr.TabItem(
                    "📚 Knowledge Base", id="kb_tab", elem_classes="tab-item"
                ):
                    with gr.Column(elem_classes="feature-card fade-in"):
                        kb_components = self._create_knowledge_base_tab()

                # 📈 Analytics Dashboard Tab
                with gr.TabItem(
                    "📈 Analytics", id="analytics_tab", elem_classes="tab-item"
                ):
                    with gr.Column(elem_classes="feature-card fade-in"):
                        analytics_components = self._create_analytics_tab()

                # 🩺 System Health Tab
                with gr.TabItem(
                    "🩺 System Health", id="health_tab", elem_classes="tab-item"
                ):
                    with gr.Column(elem_classes="feature-card fade-in"):
                        health_components = self._create_health_tab()

                # ⚙️ Settings Tab
                with gr.TabItem(
                    "⚙️ Settings", id="settings_tab", elem_classes="tab-item"
                ):
                    with gr.Column(elem_classes="feature-card fade-in"):
                        settings_components = self._create_settings_tab()

        self.interface = interface

    def _create_upload_tab(self):
        """🎨 Create the modern document upload tab with full-width design."""
        # 📊 Upload Statistics Cards
        with gr.Row(elem_classes="analytics-grid"):
            with gr.Column(elem_classes="stat-card accent-blue"):
                gr.HTML(
                    """

                <div class="stat-value">7+</div>

                <div class="stat-label">Supported Formats</div>

                """
                )
            with gr.Column(elem_classes="stat-card accent-green"):
                gr.HTML(
                    """

                <div class="stat-value">∞</div>

                <div class="stat-label">File Size Limit</div>

                """
                )
            with gr.Column(elem_classes="stat-card accent-purple"):
                gr.HTML(
                    """

                <div class="stat-value">⚡</div>

                <div class="stat-label">Fast Processing</div>

                """
                )

        # 🎯 Main Upload Interface
        with gr.Row(elem_classes="grid-2"):
            with gr.Column(elem_classes="metric-card"):
                gr.HTML(
                    """

                <h3 style="margin-top: 0; color: #667eea; font-weight: 600;">

                    📄 Upload Documents

                </h3>

                <p style="color: #718096; margin-bottom: 1.5rem;">

                    Drag & drop files or click to browse. Multiple files supported.

                </p>

                """
                )

                # 📋 Supported Formats Display
                gr.HTML(
                    """

                <div style="background: linear-gradient(135deg, #1c1c32 0%, #1c1c32 100%);

                           color: white; padding: 1rem; border-radius: 12px; margin-bottom: 1.5rem;">

                    <strong>✅ Supported Formats:</strong><br>

                    📄 PDF • 📝 DOCX • 📊 CSV • 📈 XLSX • 🎯 PPTX • 📄 TXT • 📝 MD

                </div>

                """
                )

                file_upload = gr.File(
                    label="📁 Select Files",
                    file_count="multiple",
                    file_types=[
                        ".pdf",
                        ".docx",
                        ".csv",
                        ".xlsx",
                        ".pptx",
                        ".txt",
                        ".md",
                    ],
                    height=250,
                    elem_classes="input-field",
                )

                # 🎨 Action Buttons with Modern Styling
                with gr.Row():
                    upload_btn = gr.Button(
                        "🚀 Process Documents",
                        variant="primary",
                        size="lg",
                        elem_classes="btn-primary",
                    )
                    clear_upload_btn = gr.Button(
                        "🗑️ Clear", variant="secondary", elem_classes="btn-secondary"
                    )

            with gr.Column(elem_classes="metric-card"):
                gr.HTML(
                    """

                <h3 style="margin-top: 0; color: #1a1a2e; font-weight: 600;">

                    📊 Processing Results

                </h3>

                <p style="color: #718096; margin-bottom: 1.5rem;">

                    Real-time processing status and detailed results will appear here.

                </p>

                """
                )

                upload_output = gr.Textbox(
                    label="📋 Processing Log",
                    lines=18,
                    interactive=False,
                    placeholder="🔄 Upload results will appear here...\n\n💡 Tips:\n• Multiple files can be processed simultaneously\n• Processing time depends on file size and complexity\n• Check the status bar for real-time updates",
                    elem_classes="input-field",
                )

        # 📈 Processing Tips
        with gr.Accordion("💡 Processing Tips & Best Practices", open=False):
            gr.HTML(
                """

            <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 1rem;">

                <div class="metric-card accent-blue">

                    <h4>📄 File Preparation</h4>

                    <ul>

                        <li>Ensure text is readable and not scanned images</li>

                        <li>Remove password protection from PDFs</li>

                        <li>Use descriptive filenames</li>

                    </ul>

                </div>

                <div class="metric-card accent-green">

                    <h4>⚡ Performance Tips</h4>

                    <ul>

                        <li>Smaller files process faster</li>

                        <li>Batch upload related documents</li>

                        <li>Monitor system resources</li>

                    </ul>

                </div>

                <div class="metric-card accent-purple">

                    <h4>🎯 Quality Guidelines</h4>

                    <ul>

                        <li>High-quality text improves search accuracy</li>

                        <li>Structured documents work better</li>

                        <li>Remove unnecessary formatting</li>

                    </ul>

                </div>

            </div>

            """
            )

        # Event handlers
        upload_btn.click(
            fn=self._process_documents,
            inputs=[file_upload],
            outputs=[upload_output, self.status_display, self.stats_display],
        )

        clear_upload_btn.click(
            fn=lambda: ("", "Ready "), outputs=[upload_output, self.status_display]
        )

        return {
            "file_upload": file_upload,
            "upload_btn": upload_btn,
            "upload_output": upload_output,
        }

    def _create_url_tab(self):
        """Create the URL processing tab."""
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Add URLs")
                gr.Markdown("Enter URLs to extract content from web pages")

                url_input = gr.Textbox(
                    label="URLs (one per line)",
                    lines=8,
                    placeholder="https://example.com\nhttps://another-site.com\n...",
                )

                with gr.Accordion("⚙️ Advanced Crawling Options", open=False):
                    gr.Markdown("🕷️ **Crawl Configuration**")

                    max_depth = gr.Slider(
                        label="🔍 Crawl Depth (How deep to follow links)",
                        minimum=1,
                        maximum=5,
                        value=1,
                        step=1,
                        info="Higher depth = more pages but slower processing",
                    )

                    follow_links = gr.Checkbox(
                        label="🔗 Follow Internal Links",
                        value=True,
                        info="Automatically discover and process linked pages",
                    )

                    gr.Markdown("⚡ **Performance Tips:**")
                    gr.Markdown("• Depth 1: Single page only")
                    gr.Markdown("• Depth 2-3: Good for small sites")
                    gr.Markdown("• Depth 4-5: Use carefully, can be slow")

                with gr.Row():
                    url_btn = gr.Button("🚀 Process URLs", variant="primary", size="lg")
                    clear_url_btn = gr.Button("🗑️ Clear", variant="secondary")

                # Progress indicator
                with gr.Row():
                    progress_info = gr.Textbox(
                        label="🔄 Processing Status",
                        value="Ready to process URLs...",
                        interactive=False,
                        visible=True,
                    )

            with gr.Column(scale=1):
                gr.Markdown("###   Processing Results")
                url_output = gr.Textbox(
                    label="Results",
                    lines=15,
                    interactive=False,
                    placeholder="URL processing results will appear here...",
                )

        # Event handlers
        url_btn.click(
            fn=self._process_urls,
            inputs=[url_input, max_depth, follow_links],
            outputs=[
                url_output,
                self.status_display,
                self.stats_display,
                progress_info,
            ],
        )

        clear_url_btn.click(
            fn=lambda: ("", "Ready 🟢", "Ready to process URLs..."),
            outputs=[url_output, self.status_display, progress_info],
        )

        return {
            "url_input": url_input,
            "url_btn": url_btn,
            "url_output": url_output,
        }

    def _create_query_tab(self):
        """🎨 Create the modern query interface tab with enhanced UX."""
        # 🎯 Quick Action Cards
        with gr.Row(elem_classes="analytics-grid"):
            with gr.Column(elem_classes="stat-card accent-blue"):
                gr.HTML(
                    """

                <div class="stat-value">🤖</div>

                <div class="stat-label">AI-Powered Search</div>

                """
                )
            with gr.Column(elem_classes="stat-card accent-green"):
                gr.HTML(
                    """

                <div class="stat-value">🌐</div>

                <div class="stat-label">Live Web Search</div>

                """
                )
            with gr.Column(elem_classes="stat-card accent-purple"):
                gr.HTML(
                    """

                <div class="stat-value">📚</div>

                <div class="stat-label">Local Knowledge</div>

                """
                )
            with gr.Column(elem_classes="stat-card accent-orange"):
                gr.HTML(
                    """

                <div class="stat-value">⚡</div>

                <div class="stat-label">Instant Results</div>

                """
                )

        # 🔍 Main Query Interface
        with gr.Row(elem_classes="grid-2"):
            with gr.Column(elem_classes="metric-card"):
                gr.HTML(
                    """

                <h3 style="margin-top: 0; color: #667eea; font-weight: 600;">

                    ❓ Ask Your Question

                </h3>

                <p style="color: #718096; margin-bottom: 1.5rem;">

                    Ask anything about your documents or get real-time information from the web.

                </p>

                """
                )

                # 🎯 Enhanced Search Input
                with gr.Column(elem_classes="search-container"):
                    query_input = gr.Textbox(
                        label="🔍 Your Question",
                        lines=4,
                        placeholder="💡 Try asking:\n• 'What are the main points in the uploaded document?'\n• 'Latest news about AI developments'\n• 'Summarize the key findings from my research papers'",
                        elem_classes="search-input",
                    )

                # 🎨 Quick Query Suggestions
                gr.HTML(
                    """

                <div style="margin: 1rem 0;">

                    <strong style="color: #667eea;">💡 Quick Suggestions:</strong>

                    <div style="display: flex; flex-wrap: wrap; gap: 0.5rem; margin-top: 0.5rem;">

                        <span style="background: #f0f9ff; color: #1e40af; padding: 0.25rem 0.75rem; border-radius: 20px; font-size: 0.875rem; cursor: pointer;" onclick="document.querySelector('textarea').value='Summarize the main points'">📄 Summarize</span>

                        <span style="background: #f0fdf4; color: #166534; padding: 0.25rem 0.75rem; border-radius: 20px; font-size: 0.875rem; cursor: pointer;" onclick="document.querySelector('textarea').value='What are the key findings?'">🔍 Key Findings</span>

                        <span style="background: #fef7ff; color: #7c2d12; padding: 0.25rem 0.75rem; border-radius: 20px; font-size: 0.875rem; cursor: pointer;" onclick="document.querySelector('textarea').value='Latest developments in this field'">🌐 Latest News</span>

                    </div>

                </div>

                """
                )

                # ⚙️ Advanced Query Options
                with gr.Accordion("⚙️ Advanced Query Options", open=False):
                    with gr.Row():
                        include_sources = gr.Checkbox(
                            label="📚 Include Sources",
                            value=True,
                            info="Show source documents and references",
                        )
                        max_results = gr.Slider(
                            label="📊 Max Results",
                            minimum=1,
                            maximum=10,
                            value=5,
                            step=1,
                            info="Maximum number of results to return",
                        )

                    # 🌐 Enhanced Search Mode Selection
                    with gr.Group():
                        gr.HTML(
                            """

                        <h4 style="color: #667eea; margin-bottom: 1rem;">🔍 Search Mode & Options</h4>

                        """
                        )

                        search_mode = gr.Dropdown(
                            label="🎯 Search Mode",
                            choices=[
                                ("🤖 Auto (Smart Routing)", "auto"),
                                ("📚 Local Only (Stored Documents)", "local_only"),
                                ("🌐 Live Only (Web Search)", "live_only"),
                                ("🔄 Hybrid (Local + Live)", "hybrid"),
                            ],
                            value="auto",
                            info="Choose how to search for information",
                        )

                        use_live_search = gr.Checkbox(
                            label="🔍 Enable Live Web Search",
                            value=False,
                            info="Enable web search (will use hybrid mode by default)",
                        )

                        with gr.Row():
                            search_depth = gr.Dropdown(
                                label="🕷️ Search Depth",
                                choices=["basic", "advanced"],
                                value="basic",
                                info="Basic: faster, Advanced: more comprehensive",
                                visible=False,
                            )
                            time_range = gr.Dropdown(
                                label="⏰ Time Range",
                                choices=["day", "week", "month", "year"],
                                value="month",
                                info="How recent should the web results be",
                                visible=False,
                            )

                        # 💡 Dynamic options visibility
                        use_live_search.change(
                            fn=lambda enabled: (
                                gr.update(visible=enabled),
                                gr.update(visible=enabled),
                                gr.update(value="hybrid" if enabled else "auto"),
                            ),
                            inputs=[use_live_search],
                            outputs=[search_depth, time_range, search_mode],
                        )

                        # 📝 Search Mode Guide
                        with gr.Accordion("ℹ️ Search Mode Guide", open=False):
                            gr.HTML(
                                """

                            <div style="display: grid; gap: 1rem;">

                                <div class="metric-card accent-blue">

                                    <h4>🤖 Auto Mode</h4>

                                    <p>Intelligently chooses the best search method based on your query</p>

                                    <ul>

                                        <li>Time-sensitive queries → Live search</li>

                                        <li>Conceptual questions → Local documents</li>

                                        <li>Factual queries → Hybrid approach</li>

                                    </ul>

                                </div>

                                <div class="metric-card accent-green">

                                    <h4>📚 Local Only</h4>

                                    <p>Search only in your uploaded documents</p>

                                    <ul>

                                        <li>Fastest response time</li>

                                        <li>Uses your knowledge base</li>

                                        <li>No internet required</li>

                                    </ul>

                                </div>

                                <div class="metric-card accent-purple">

                                    <h4>🌐 Live Only</h4>

                                    <p>Search only the web for real-time information</p>

                                    <ul>

                                        <li>Latest information</li>

                                        <li>Current events and news</li>

                                        <li>Requires Tavily API key</li>

                                    </ul>

                                </div>

                                <div class="metric-card accent-orange">

                                    <h4>🔄 Hybrid</h4>

                                    <p>Combines both local documents and live web search</p>

                                    <ul>

                                        <li>Best of both worlds</li>

                                        <li>Comprehensive results</li>

                                        <li>Balanced approach (recommended)</li>

                                    </ul>

                                </div>

                            </div>

                            """
                            )

                # 🚀 Action Buttons
                with gr.Row():
                    query_btn = gr.Button(
                        "🚀 Get Answer",
                        variant="primary",
                        size="lg",
                        elem_classes="btn-primary",
                    )
                    clear_query_btn = gr.Button(
                        "🗑️ Clear", variant="secondary", elem_classes="btn-secondary"
                    )

            with gr.Column(elem_classes="metric-card"):
                gr.HTML(
                    """

                <h3 style="margin-top: 0; color: #667eea; font-weight: 600;">

                    💬 AI Response

                </h3>

                <p style="color: #718096; margin-bottom: .5rem;">

                    Intelligent answers with source citations and confidence scoring.

                </p>

                """
                )

                response_output = gr.Markdown(
                    label="🤖 AI Response",
                    value="🔮 **Your intelligent answer will appear here...**\n\n💡 **Tips for better results:**\n- Be specific in your questions\n- Use natural language\n- Ask follow-up questions for clarification\n- Check the confidence score and sources",
                    height=450,
                    elem_classes="input-field",
                )

                # 📊 Response Metadata
                with gr.Row():
                    confidence_display = gr.Textbox(
                        label="🎯 Confidence & Performance",
                        interactive=False,
                        visible=self.enable_confidence_display,
                        elem_classes="input-field",
                    )

                # 📚 Sources Display
                sources_output = gr.JSON(
                    label="📚 Sources & References",
                    visible=self.enable_source_display,
                    elem_classes="input-field",
                )

        # 📈 Query Performance Tips
        with gr.Accordion("🎯 Query Optimization Tips", open=False):
            gr.HTML(
                """

            <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 1rem;">

                <div class="metric-card accent-blue">

                    <h4>🎯 Question Formulation</h4>

                    <ul>

                        <li>Be specific and clear</li>

                        <li>Use natural language</li>

                        <li>Include context when needed</li>

                        <li>Ask one question at a time</li>

                    </ul>

                </div>

                <div class="metric-card accent-green">

                    <h4>🔍 Search Strategy</h4>

                    <ul>

                        <li>Use Auto mode for best results</li>

                        <li>Enable live search for current info</li>

                        <li>Adjust max results based on need</li>

                        <li>Check confidence scores</li>

                    </ul>

                </div>

                <div class="metric-card accent-purple">

                    <h4>📚 Source Utilization</h4>

                    <ul>

                        <li>Review source citations</li>

                        <li>Cross-reference multiple sources</li>

                        <li>Verify critical information</li>

                        <li>Use sources for deeper research</li>

                    </ul>

                </div>

            </div>

            """
            )

        # Event handlers
        query_btn.click(
            fn=self._process_query,
            inputs=[
                query_input,
                include_sources,
                max_results,
                use_live_search,
                search_depth,
                time_range,
                search_mode,
            ],
            outputs=[
                response_output,
                confidence_display,
                sources_output,
                self.status_display,
                self.stats_display,
            ],
        )

        clear_query_btn.click(
            fn=lambda: ("", "", {}, "Ready 🟢"),
            outputs=[
                response_output,
                confidence_display,
                sources_output,
                self.status_display,
            ],
        )

        return {
            "query_input": query_input,
            "query_btn": query_btn,
            "response_output": response_output,
            "sources_output": sources_output,
            "use_live_search": use_live_search,
            "search_depth": search_depth,
            "time_range": time_range,
            "search_mode": search_mode,
        }

    def _create_knowledge_base_tab(self):
        """Create the knowledge base management tab."""
        with gr.Column():
            gr.Markdown("### 📚 Knowledge Base Management")

            with gr.Row():
                refresh_btn = gr.Button("Refresh", variant="secondary")
                export_btn = gr.Button("📤 Export", variant="secondary")
                clear_kb_btn = gr.Button("Clear All", variant="stop")

            # Knowledge base stats with enhanced embedding model info
            kb_stats = gr.JSON(
                label="📊 Knowledge Base Statistics",
                value={
                    "total_documents": 0,
                    "total_chunks": 0,
                    "storage_size": "0 MB",
                    "embedding_model": "Loading...",
                    "embedding_status": "Checking...",
                    "vector_db_status": "Checking...",
                },
            )

            # 🤖 Embedding Model Status Display
            embedding_model_status = gr.JSON(
                label="🤖 Embedding Model Information",
                value={
                    "model_name": "Loading...",
                    "provider": "Checking...",
                    "status": "Initializing...",
                    "api_status": "Checking connection...",
                    "dimension": "Unknown",
                    "performance": "Gathering stats...",
                },
            )

            # Document list
            document_list = gr.Dataframe(
                headers=["Source", "Type", "Chunks", "Added"],
                datatype=["str", "str", "number", "str"],
                label="📄 Documents in Knowledge Base",
                interactive=False,
            )

        # Event handlers
        refresh_btn.click(
            fn=self._refresh_knowledge_base,
            outputs=[kb_stats, embedding_model_status, document_list],
        )

        return {
            "kb_stats": kb_stats,
            "embedding_model_status": embedding_model_status,
            "document_list": document_list,
        }

    def _create_analytics_tab(self):
        """Create the analytics dashboard tab with real-time data."""
        with gr.Column():
            gr.Markdown("### 📈 Analytics Dashboard")
            gr.Markdown("Real-time insights into your RAG system performance")

            with gr.Row():
                refresh_analytics_btn = gr.Button(
                    "🔄 Refresh Analytics", variant="secondary"
                )
                export_analytics_btn = gr.Button(
                    "📊 Export Report", variant="secondary"
                )

            with gr.Row():
                with gr.Column():
                    query_analytics = gr.JSON(
                        label="🔍 Query Analytics",
                        value=self._get_initial_query_analytics(),
                    )

                with gr.Column():
                    system_metrics = gr.JSON(
                        label="⚡ System Metrics",
                        value=self._get_initial_system_metrics(),
                    )

            with gr.Row():
                with gr.Column():
                    performance_metrics = gr.JSON(
                        label="🚀 Performance Metrics",
                        value=self._get_initial_performance_metrics(),
                    )

                with gr.Column():
                    usage_stats = gr.JSON(
                        label="📊 Usage Statistics",
                        value=self._get_initial_usage_stats(),
                    )

            # Query history with enhanced information
            query_history = gr.Dataframe(
                headers=[
                    "Query",
                    "Results",
                    "Confidence",
                    "Processing Time",
                    "Timestamp",
                ],
                datatype=["str", "number", "number", "str", "str"],
                label="📝 Recent Query History",
                interactive=False,
                value=self._get_initial_query_history(),
            )

            # Event handlers
            refresh_analytics_btn.click(
                fn=self._refresh_analytics,
                outputs=[
                    query_analytics,
                    system_metrics,
                    performance_metrics,
                    usage_stats,
                    query_history,
                ],
            )

        return {
            "query_analytics": query_analytics,
            "system_metrics": system_metrics,
            "performance_metrics": performance_metrics,
            "usage_stats": usage_stats,
            "query_history": query_history,
        }

    def _get_initial_query_analytics(self) -> Dict[str, Any]:
        """Get initial query analytics data."""
        return {
            "total_queries": self.query_count,
            "average_confidence": "N/A",
            "most_common_topics": [],
            "query_success_rate": "100%",
            "cache_hit_rate": "0%",
            "status": "📊 Ready to track queries",
        }

    def _get_initial_system_metrics(self) -> Dict[str, Any]:
        """Get initial system metrics."""
        # Get real embedding model info
        embedding_info = self._get_embedding_model_info()

        return {
            "documents_processed": self.total_documents,
            "chunks_stored": self.total_chunks,
            "embedding_model": embedding_info.get("model_name", "Gemini"),
            "embedding_status": embedding_info.get("status", "Checking..."),
            "embedding_provider": embedding_info.get("provider", "Google"),
            "vector_db": "Pinecone",
            "uptime": "Just started",
            "status": "🟢 System operational",
        }

    def _get_initial_performance_metrics(self) -> Dict[str, Any]:
        """Get initial performance metrics."""
        return {
            "avg_query_time": "N/A",
            "avg_embedding_time": "N/A",
            "avg_retrieval_time": "N/A",
            "memory_usage": "Normal",
            "throughput": "N/A queries/min",
            "status": "⚡ Performance tracking active",
        }

    def _get_initial_usage_stats(self) -> Dict[str, Any]:
        """Get initial usage statistics."""
        return {
            "documents_uploaded": 0,
            "urls_processed": 0,
            "successful_queries": 0,
            "failed_queries": 0,
            "peak_usage_time": "N/A",
            "status": "📈 Usage tracking enabled",
        }

    def _get_initial_query_history(self) -> List[List[str]]:
        """Get initial query history."""
        return [
            ["No queries yet", "0", "0.0", "0.0s", "Start asking questions!"],
            ["Upload documents first", "0", "0.0", "0.0s", "Build your knowledge base"],
            [
                "Try the examples above",
                "0",
                "0.0",
                "0.0s",
                "Get started with sample queries",
            ],
        ]

    def _refresh_analytics(

        self,

    ) -> Tuple[
        Dict[str, Any], Dict[str, Any], Dict[str, Any], Dict[str, Any], List[List[str]]
    ]:
        """Refresh all analytics data."""
        try:
            # Get real analytics from query processor if available
            query_analytics = self._get_real_query_analytics()
            system_metrics = self._get_real_system_metrics()
            performance_metrics = self._get_real_performance_metrics()
            usage_stats = self._get_real_usage_stats()
            query_history = self._get_real_query_history()

            return (
                query_analytics,
                system_metrics,
                performance_metrics,
                usage_stats,
                query_history,
            )

        except Exception as e:
            self._log_safe(f"❌ Error refreshing analytics: {e}", "error")
            return (
                {"error": str(e)},
                {"error": str(e)},
                {"error": str(e)},
                {"error": str(e)},
                [["Error loading history", "0", "0.0", "0.0s", str(e)]],
            )

    def _get_real_query_analytics(self) -> Dict[str, Any]:
        """Get real query analytics from the system."""
        try:
            analytics = {
                "total_queries": self.query_count,
                "documents_in_kb": self.total_documents,
                "chunks_available": self.total_chunks,
                "last_updated": datetime.now().strftime("%H:%M:%S"),
            }

            # Get analytics from query processor if available
            if hasattr(self.rag_system, "query_processor") and hasattr(
                self.rag_system.query_processor, "get_query_analytics"
            ):
                processor_analytics = (
                    self.rag_system.query_processor.get_query_analytics()
                )
                analytics.update(processor_analytics)

            # Calculate additional metrics
            if self.query_count > 0:
                analytics["avg_results_per_query"] = round(
                    self.total_chunks / max(self.query_count, 1), 2
                )
                analytics["system_utilization"] = (
                    "Active" if self.query_count > 5 else "Light"
                )
            else:
                analytics["avg_results_per_query"] = 0
                analytics["system_utilization"] = "Idle"

            analytics["status"] = "🟢 Analytics active"
            return analytics

        except Exception as e:
            return {"error": f"Analytics unavailable: {str(e)}", "status": "❌ Error"}

    def _get_real_system_metrics(self) -> Dict[str, Any]:
        """Get real system metrics with embedding model info."""
        try:
            # Get embedding model information
            embedding_info = self._get_embedding_model_info()

            metrics = {
                "documents_processed": self.total_documents,
                "chunks_stored": self.total_chunks,
                "queries_processed": self.query_count,
                "last_updated": datetime.now().strftime("%H:%M:%S"),
                "embedding_model": embedding_info.get("model_name", "Unknown"),
                "embedding_status": embedding_info.get("status", "Unknown"),
                "embedding_provider": embedding_info.get("provider", "Unknown"),
                "embedding_dimension": embedding_info.get("dimension", "Unknown"),
            }

            # Get system status
            if hasattr(self.rag_system, "get_system_status"):
                system_status = self.rag_system.get_system_status()
                metrics.update(
                    {
                        "overall_health": system_status.get(
                            "overall_status", "unknown"
                        ),
                        "components_healthy": sum(
                            system_status.get("components", {}).values()
                        ),
                        "total_components": len(system_status.get("components", {})),
                    }
                )

            # Add component status with embedding model details
            components = []
            if hasattr(self.rag_system, "embedding_generator"):
                components.append(
                    f"Embedding Generator ({embedding_info.get('model_name', 'Unknown')})"
                )
            if hasattr(self.rag_system, "vector_db"):
                components.append("Vector Database")
            if hasattr(self.rag_system, "query_processor"):
                components.append("Query Processor")

            metrics["active_components"] = components
            metrics["status"] = "🟢 System healthy"
            return metrics

        except Exception as e:
            return {
                "error": f"System metrics unavailable: {str(e)}",
                "status": "❌ Error",
            }

    def _get_real_performance_metrics(self) -> Dict[str, Any]:
        """Get real performance metrics."""
        try:
            # Basic performance tracking
            metrics = {
                "total_processing_time": "N/A",
                "avg_query_response": "N/A",
                "system_load": "Normal",
                "last_updated": datetime.now().strftime("%H:%M:%S"),
            }

            # If we have query history, calculate averages
            if hasattr(self.rag_system, "query_processor") and hasattr(
                self.rag_system.query_processor, "query_history"
            ):
                history = self.rag_system.query_processor.query_history
                if history:
                    # Calculate average processing time if available
                    processing_times = [
                        q.get("processing_time", 0)
                        for q in history
                        if "processing_time" in q
                    ]
                    if processing_times:
                        avg_time = sum(processing_times) / len(processing_times)
                        metrics["avg_query_response"] = f"{avg_time:.2f}s"

            metrics["queries_per_minute"] = (
                f"{self.query_count / max(1, 1):.1f}"  # Rough estimate
            )
            metrics["throughput"] = "Good" if self.query_count > 0 else "Idle"
            metrics["status"] = "⚡ Performance tracking active"
            return metrics

        except Exception as e:
            return {
                "error": f"Performance metrics unavailable: {str(e)}",
                "status": "❌ Error",
            }

    def _get_real_usage_stats(self) -> Dict[str, Any]:
        """Get real usage statistics."""
        try:
            stats = {
                "documents_uploaded": self.total_documents,
                "urls_processed": 0,  # Would need to track this separately
                "successful_queries": self.query_count,  # Assuming all successful for now
                "failed_queries": 0,  # Would need error tracking
                "total_chunks_created": self.total_chunks,
                "last_updated": datetime.now().strftime("%H:%M:%S"),
            }

            # Calculate usage patterns
            if self.query_count > 0:
                stats["most_active_feature"] = "Query Processing"
                stats["usage_trend"] = "Growing" if self.query_count > 5 else "Starting"
            else:
                stats["most_active_feature"] = "Document Upload"
                stats["usage_trend"] = "Initial Setup"

            stats["status"] = "📊 Usage tracking active"
            return stats

        except Exception as e:
            return {"error": f"Usage stats unavailable: {str(e)}", "status": "❌ Error"}

    def _get_real_query_history(self) -> List[List[str]]:
        """Get real query history."""
        try:
            history_data = []

            # Get query history from query processor if available
            if hasattr(self.rag_system, "query_processor") and hasattr(
                self.rag_system.query_processor, "query_history"
            ):
                history = self.rag_system.query_processor.query_history[
                    -10:
                ]  # Last 10 queries

                for query_item in history:
                    query_text = (
                        query_item.get("query", "Unknown")[:50] + "..."
                        if len(query_item.get("query", "")) > 50
                        else query_item.get("query", "Unknown")
                    )
                    result_count = query_item.get("result_count", 0)
                    confidence = "N/A"  # Would need to store this
                    processing_time = (
                        f"{query_item.get('processing_time', 0):.2f}s"
                        if "processing_time" in query_item
                        else "N/A"
                    )
                    timestamp = (
                        query_item.get("timestamp", datetime.now()).strftime("%H:%M:%S")
                        if "timestamp" in query_item
                        else "Unknown"
                    )

                    history_data.append(
                        [
                            query_text,
                            str(result_count),
                            confidence,
                            processing_time,
                            timestamp,
                        ]
                    )

            # If no real history, show helpful placeholder
            if not history_data:
                history_data = [
                    ["No queries yet", "0", "0.0", "0.0s", "Ask your first question!"],
                    [
                        "Upload documents to get started",
                        "0",
                        "0.0",
                        "0.0s",
                        "Build your knowledge base",
                    ],
                    [
                        "Try asking about your documents",
                        "0",
                        "0.0",
                        "0.0s",
                        "Get intelligent answers",
                    ],
                ]

            return history_data

        except Exception as e:
            return [["Error loading history", "0", "0.0", "0.0s", str(e)]]

    def _create_settings_tab(self):
        """Create the comprehensive settings management tab."""
        with gr.Column():
            gr.Markdown("### ⚙️ Environment Variables Settings")
            gr.Markdown(
                "Configure API keys and system settings with secure storage options"
            )

            # 🔄 Refresh and action buttons
            with gr.Row():
                refresh_settings_btn = gr.Button("🔄 Refresh", variant="secondary")
                load_env_btn = gr.Button("📁 Load from .env", variant="secondary")
                clear_cache_btn = gr.Button("🗑️ Clear Cache", variant="secondary")
                export_btn = gr.Button("📤 Export Settings", variant="secondary")

            # 📊 Settings status display
            settings_status = gr.Textbox(
                label="🔔 Status",
                value="Ready to configure settings",
                interactive=False,
                container=False,
            )

            # 🔧 Main settings interface
            with gr.Tabs():
                # API Keys Tab
                with gr.TabItem("🔑 API Keys"):
                    api_keys_components = self._create_api_keys_section()

                # System Settings Tab
                with gr.TabItem("🛠️ System Settings"):
                    system_settings_components = self._create_system_settings_section()

                # Storage Options Tab
                with gr.TabItem("💾 Storage & Export"):
                    storage_components = self._create_storage_section()

            # 📋 Settings overview
            with gr.Accordion("📋 Current Settings Overview", open=False):
                settings_overview = gr.JSON(
                    label="Environment Variables Status", value={}
                )

            # Event handlers for main buttons
            refresh_settings_btn.click(
                fn=self._refresh_all_settings,
                outputs=[
                    settings_status,
                    settings_overview,
                    *api_keys_components.values(),
                    *system_settings_components.values(),
                ],
            )

            load_env_btn.click(
                fn=self._load_from_env_file,
                outputs=[settings_status, settings_overview],
            )

            clear_cache_btn.click(
                fn=self._clear_settings_cache,
                outputs=[settings_status, settings_overview],
            )

            export_btn.click(fn=self._export_settings, outputs=[settings_status])

        return {
            "settings_status": settings_status,
            "settings_overview": settings_overview,
            **api_keys_components,
            **system_settings_components,
            **storage_components,
        }

    def _create_api_keys_section(self):
        """Create the API keys configuration section."""
        components = {}

        with gr.Column():
            gr.Markdown("#### 🔑 API Keys Configuration")
            gr.Markdown(
                "Configure your API keys for AI services. Keys are masked for security."
            )

            # Gemini API Key
            with gr.Group():
                gr.Markdown("**🤖 Google Gemini API** (Required)")
                with gr.Row():
                    gemini_key = gr.Textbox(
                        label="GEMINI_API_KEY",
                        placeholder="AIzaSy...",
                        type="password",
                        info="Required for embeddings and LLM functionality",
                    )
                    gemini_test_btn = gr.Button(
                        "🧪 Test", variant="secondary", size="sm"
                    )

                gemini_status = gr.Textbox(
                    label="Status",
                    value="Not configured",
                    interactive=False,
                    container=False,
                )

                with gr.Row():
                    gemini_cache_btn = gr.Button(
                        "💾 Save to Cache", variant="primary", size="sm"
                    )
                    gemini_env_btn = gr.Button(
                        "📁 Save to .env", variant="primary", size="sm"
                    )

                gr.Markdown(
                    "💡 [Get your Gemini API key](https://aistudio.google.com/)"
                )

            # Pinecone API Key
            with gr.Group():
                gr.Markdown("**🌲 Pinecone API  (Required)**")
                with gr.Row():
                    pinecone_key = gr.Textbox(
                        label="PINECONE_API_KEY",
                        placeholder="pc-...",
                        type="password",
                        info="For vector database storage",
                    )
                    pinecone_test_btn = gr.Button(
                        "🧪 Test", variant="secondary", size="sm"
                    )

                pinecone_status = gr.Textbox(
                    label="Status",
                    value="Not configured",
                    interactive=False,
                    container=False,
                )

                with gr.Row():
                    pinecone_cache_btn = gr.Button(
                        "💾 Save to Cache", variant="primary", size="sm"
                    )
                    pinecone_env_btn = gr.Button(
                        "📁 Save to .env", variant="primary", size="sm"
                    )

                gr.Markdown("💡 [Get your Pinecone API key](https://www.pinecone.io/)")

            # OpenAI API Key
            with gr.Group():
                gr.Markdown("**🔥 OpenAI API** (Optional)")
                with gr.Row():
                    openai_key = gr.Textbox(
                        label="OPENAI_API_KEY",
                        placeholder="sk-...",
                        type="password",
                        info="For alternative LLM functionality",
                    )
                    openai_test_btn = gr.Button(
                        "🧪 Test", variant="secondary", size="sm"
                    )

                openai_status = gr.Textbox(
                    label="Status",
                    value="Not configured",
                    interactive=False,
                    container=False,
                )

                with gr.Row():
                    openai_cache_btn = gr.Button(
                        "💾 Save to Cache", variant="primary", size="sm"
                    )
                    openai_env_btn = gr.Button(
                        "📁 Save to .env", variant="primary", size="sm"
                    )

                gr.Markdown(
                    "💡 [Get your OpenAI API key](https://platform.openai.com/api-keys)"
                )

            # Tavily API Key
            with gr.Group():
                gr.Markdown("**🌐 Tavily API** (Optional - for Live Search)")
                with gr.Row():
                    tavily_key = gr.Textbox(
                        label="TAVILY_API_KEY",
                        placeholder="tvly-...",
                        type="password",
                        info="For real-time web search functionality",
                    )
                    tavily_test_btn = gr.Button(
                        "🧪 Test", variant="secondary", size="sm"
                    )

                tavily_status = gr.Textbox(
                    label="Status",
                    value="Not configured",
                    interactive=False,
                    container=False,
                )

                with gr.Row():
                    tavily_cache_btn = gr.Button(
                        "💾 Save to Cache", variant="primary", size="sm"
                    )
                    tavily_env_btn = gr.Button(
                        "📁 Save to .env", variant="primary", size="sm"
                    )

                gr.Markdown(
                    "💡 [Get your Tavily API key](https://app.tavily.com/sign-in)"
                )

        # Store components for event handling
        components.update(
            {
                "gemini_key": gemini_key,
                "gemini_status": gemini_status,
                "pinecone_key": pinecone_key,
                "pinecone_status": pinecone_status,
                "openai_key": openai_key,
                "openai_status": openai_status,
                "tavily_key": tavily_key,
                "tavily_status": tavily_status,
            }
        )

        # Event handlers for API keys
        gemini_test_btn.click(
            fn=lambda: self._test_api_connection("GEMINI_API_KEY"),
            outputs=[gemini_status],
        )

        gemini_cache_btn.click(
            fn=lambda key: self._save_setting("GEMINI_API_KEY", key, "cache"),
            inputs=[gemini_key],
            outputs=[gemini_status],
        )

        gemini_env_btn.click(
            fn=lambda key: self._save_setting("GEMINI_API_KEY", key, "env_file"),
            inputs=[gemini_key],
            outputs=[gemini_status],
        )

        pinecone_test_btn.click(
            fn=lambda: self._test_api_connection("PINECONE_API_KEY"),
            outputs=[pinecone_status],
        )

        pinecone_cache_btn.click(
            fn=lambda key: self._save_setting("PINECONE_API_KEY", key, "cache"),
            inputs=[pinecone_key],
            outputs=[pinecone_status],
        )

        pinecone_env_btn.click(
            fn=lambda key: self._save_setting("PINECONE_API_KEY", key, "env_file"),
            inputs=[pinecone_key],
            outputs=[pinecone_status],
        )

        openai_test_btn.click(
            fn=lambda: self._test_api_connection("OPENAI_API_KEY"),
            outputs=[openai_status],
        )

        openai_cache_btn.click(
            fn=lambda key: self._save_setting("OPENAI_API_KEY", key, "cache"),
            inputs=[openai_key],
            outputs=[openai_status],
        )

        openai_env_btn.click(
            fn=lambda key: self._save_setting("OPENAI_API_KEY", key, "env_file"),
            inputs=[openai_key],
            outputs=[openai_status],
        )

        tavily_test_btn.click(
            fn=lambda: self._test_api_connection("TAVILY_API_KEY"),
            outputs=[tavily_status],
        )

        tavily_cache_btn.click(
            fn=lambda key: self._save_setting("TAVILY_API_KEY", key, "cache"),
            inputs=[tavily_key],
            outputs=[tavily_status],
        )

        tavily_env_btn.click(
            fn=lambda key: self._save_setting("TAVILY_API_KEY", key, "env_file"),
            inputs=[tavily_key],
            outputs=[tavily_status],
        )

        return components

    def _create_system_settings_section(self):
        """Create the system settings configuration section."""
        components = {}

        with gr.Column():
            gr.Markdown("#### 🛠️ System Configuration")
            gr.Markdown("Configure system-level settings and preferences")

            # Pinecone Environment
            with gr.Group():
                gr.Markdown("**🌍 Pinecone Environment**")
                pinecone_env = gr.Dropdown(
                    label="PINECONE_ENVIRONMENT",
                    choices=[
                        "us-east-1",
                        "us-west1-gcp",
                        "eu-west1-gcp",
                        "asia-southeast1-gcp",
                    ],
                    value="us-east-1",
                    info="Pinecone server region",
                )

                with gr.Row():
                    pinecone_env_cache_btn = gr.Button(
                        "💾 Save to Cache", variant="primary", size="sm"
                    )
                    pinecone_env_file_btn = gr.Button(
                        "📁 Save to .env", variant="primary", size="sm"
                    )

            # Pinecone Index Name
            with gr.Group():
                gr.Markdown("**📊 Pinecone Index Name**")
                pinecone_index = gr.Textbox(
                    label="PINECONE_INDEX_NAME",
                    value="rag-ai-index",
                    placeholder="rag-ai-index",
                    info="Name of your Pinecone index",
                )

                with gr.Row():
                    pinecone_index_cache_btn = gr.Button(
                        "💾 Save to Cache", variant="primary", size="sm"
                    )
                    pinecone_index_file_btn = gr.Button(
                        "📁 Save to .env", variant="primary", size="sm"
                    )

            # Gradio Share
            with gr.Group():
                gr.Markdown("**🌐 Gradio Public Sharing**")
                gradio_share = gr.Dropdown(
                    label="GRADIO_SHARE",
                    choices=["false", "true"],
                    value="false",
                    info="Enable public sharing of the interface",
                )

                with gr.Row():
                    gradio_share_cache_btn = gr.Button(
                        "💾 Save to Cache", variant="primary", size="sm"
                    )
                    gradio_share_file_btn = gr.Button(
                        "📁 Save to .env", variant="primary", size="sm"
                    )

            # Port Configuration
            with gr.Group():
                gr.Markdown("**🔌 Server Port**")
                port_setting = gr.Number(
                    label="PORT",
                    value=7860,
                    minimum=1000,
                    maximum=65535,
                    info="Server port number (requires restart)",
                )

                with gr.Row():
                    port_cache_btn = gr.Button(
                        "💾 Save to Cache", variant="primary", size="sm"
                    )
                    port_file_btn = gr.Button(
                        "📁 Save to .env", variant="primary", size="sm"
                    )

            # System settings status
            system_status = gr.Textbox(
                label="System Settings Status",
                value="Ready",
                interactive=False,
                container=False,
            )

        components.update(
            {
                "pinecone_env": pinecone_env,
                "pinecone_index": pinecone_index,
                "gradio_share": gradio_share,
                "port_setting": port_setting,
                "system_status": system_status,
            }
        )

        # Event handlers for system settings
        pinecone_env_cache_btn.click(
            fn=lambda val: self._save_setting("PINECONE_ENVIRONMENT", val, "cache"),
            inputs=[pinecone_env],
            outputs=[system_status],
        )

        pinecone_env_file_btn.click(
            fn=lambda val: self._save_setting("PINECONE_ENVIRONMENT", val, "env_file"),
            inputs=[pinecone_env],
            outputs=[system_status],
        )

        pinecone_index_cache_btn.click(
            fn=lambda val: self._save_setting("PINECONE_INDEX_NAME", val, "cache"),
            inputs=[pinecone_index],
            outputs=[system_status],
        )

        pinecone_index_file_btn.click(
            fn=lambda val: self._save_setting("PINECONE_INDEX_NAME", val, "env_file"),
            inputs=[pinecone_index],
            outputs=[system_status],
        )

        gradio_share_cache_btn.click(
            fn=lambda val: self._save_setting("GRADIO_SHARE", val, "cache"),
            inputs=[gradio_share],
            outputs=[system_status],
        )

        gradio_share_file_btn.click(
            fn=lambda val: self._save_setting("GRADIO_SHARE", val, "env_file"),
            inputs=[gradio_share],
            outputs=[system_status],
        )

        port_cache_btn.click(
            fn=lambda val: self._save_setting("PORT", str(int(val)), "cache"),
            inputs=[port_setting],
            outputs=[system_status],
        )

        port_file_btn.click(
            fn=lambda val: self._save_setting("PORT", str(int(val)), "env_file"),
            inputs=[port_setting],
            outputs=[system_status],
        )

        return components

    def _create_storage_section(self):
        """Create the storage and export section."""
        components = {}

        with gr.Column():
            gr.Markdown("#### 💾 Storage & Export Options")
            gr.Markdown("Manage how your settings are stored and exported")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("**💾 Cache Storage**")
                    gr.Markdown("• Temporary storage in memory")
                    gr.Markdown("• Lost when application restarts")
                    gr.Markdown("• Good for testing configurations")

                with gr.Column():
                    gr.Markdown("**📁 .env File Storage**")
                    gr.Markdown("• Persistent storage in .env file")
                    gr.Markdown("• Survives application restarts")
                    gr.Markdown("• Recommended for production use")

            # Export options
            with gr.Group():
                gr.Markdown("**📤 Export Settings**")

                with gr.Row():
                    include_sensitive = gr.Checkbox(
                        label="Include API Keys (masked)",
                        value=False,
                        info="Include API keys in export (they will be masked)",
                    )
                    export_format = gr.Dropdown(
                        label="Export Format",
                        choices=["JSON", "ENV"],
                        value="JSON",
                        info="Choose export format",
                    )

                export_output = gr.Textbox(
                    label="Export Output",
                    lines=10,
                    interactive=False,
                    placeholder="Exported settings will appear here...",
                )

                export_settings_btn = gr.Button("📤 Generate Export", variant="primary")

            # Storage status
            storage_status = gr.Textbox(
                label="Storage Status",
                value="Ready",
                interactive=False,
                container=False,
            )

        components.update(
            {
                "include_sensitive": include_sensitive,
                "export_format": export_format,
                "export_output": export_output,
                "storage_status": storage_status,
            }
        )

        # Export event handler
        export_settings_btn.click(
            fn=self._generate_export,
            inputs=[include_sensitive, export_format],
            outputs=[export_output, storage_status],
        )

        return components

    def _create_health_tab(self):
        """Create the system health monitoring tab."""
        with gr.Column():
            gr.Markdown("### System Health")

            with gr.Row():
                health_check_btn = gr.Button("Run Health Check", variant="primary")
                restart_btn = gr.Button("Restart Services", variant="secondary")

            # System status
            system_status = gr.JSON(
                label="System Status",
                value={},
            )

            # Component status
            component_status = gr.Dataframe(
                headers=["Component", "Status", "Details"],
                datatype=["str", "str", "str"],
                label="Component Status",
                interactive=False,
            )

            # Logs
            system_logs = gr.Textbox(
                label="  System Logs",
                lines=10,
                interactive=False,
                placeholder="System logs will appear here...",
            )

        # Event handlers
        health_check_btn.click(
            fn=self._run_health_check,
            outputs=[system_status, component_status, system_logs],
        )

        return {
            "system_status": system_status,
            "component_status": component_status,
            "system_logs": system_logs,
        }

    def _get_custom_css(self) -> str:
        """🎨 Get modern full-width custom CSS for the interface."""
        return """

        /* 🌟 Global Container - Full Width */

        .gradio-container {

            max-width: 100% !important;

            width: 100% !important;

            margin: 0 !important;

            padding: 0 20px !important;

        }

        

        /* 🎨 Modern Color Scheme */

        :root {

            --primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);

            --secondary-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);

            --success-gradient: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);

            --warning-gradient: linear-gradient(135deg, #43e97b 0%, #38f9d7 100%);

            --dark-bg: #1a1a2e;

            --dark-card: #16213e;

            --light-bg: #f8fafc;

            --light-card: #ffffff;

            --text-primary: #2d3748;

            --text-secondary: #718096;

            --border-color: #e2e8f0;

            --red: #f55b75;

            --shadow-sm: 0 1px 3px 0 rgba(0, 0, 0, 0.1);

            --shadow-md: 0 4px 6px -1px rgba(0, 0, 0, 0.1);

            --shadow-lg: 0 10px 15px -3px rgba(0, 0, 0, 0.1);

        }

        

        /* 🌙 Dark Theme Support */

        .dark {

            --text-primary: #f7fafc;

            --text-secondary: #cbd5e0;

            --border-color: #4a5568;

        }

        

        /* 📱 Full Width Layout */

        .main-container {

            width: 100% !important;

            max-width: 100% !important;

        }

        

        /* 🎯 Header Styling */

        .app-header {

            background: var(--primary-gradient);

            color: white;

            padding: 2rem;

            border-radius: 0 0 20px 20px;

            margin-bottom: 2rem;

            box-shadow: var(--shadow-lg);

        }

        

        .app-title {

            font-size: 2.5rem;

            font-weight: 700;

            margin-bottom: 0.5rem;

            text-shadow: 0 2px 4px rgba(0,0,0,0.3);

        }

        

        .app-description {

            font-size: 1.1rem;

            opacity: 0.9;

            margin-bottom: 0;

        }

        

        /* 📊 Status Bar Enhancement */

        .status-bar {

            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);

            color: white;

            padding: 1rem 2rem;

            border-radius: 15px;

            margin-bottom: 2rem;

            box-shadow: var(--shadow-md);

            display: grid;

            grid-template-columns: 1fr 1fr;

            gap: 2rem;

        }

        

        .status-item {

            display: flex;

            align-items: center;

            gap: 0.5rem;

        }

        

        .status-icon {

            font-size: 1.2rem;

        }

        

        /* 🎨 Tab Styling */

        .tab-nav {

            background: var(--dark-bg);

            border-radius: 15px;

            padding: 0.5rem;

            margin-bottom: 2rem;

            box-shadow: var(--shadow-sm);

            border: 1px solid var(--border-color);

        }

        

        .tab-item {

            border-radius: 10px !important;

            padding: 1rem 1.5rem !important;

            font-weight: 600 !important;

            transition: all 0.3s ease !important;

            border: none !important;

        }

        

        

        .tab-item.selected {

            background: var(--primary-gradient) !important;

            color: white !important;

            box-shadow: var(--shadow-md);

        }

        

        /* 🎯 Card Components */

        .metric-card {

            background: var(--dark-bg);

            border: 1px solid var(--border-color);

            border-radius: 15px;

            padding: 1.5rem;

            margin: 1rem 0;

            box-shadow: var(--shadow-sm);

            transition: all 0.3s ease;

        }

        

        .metric-card:hover {

            # transform: translateY(-5px);

            box-shadow: var(--shadow-lg);

            # border-color: #667eea;

        }

        

        .feature-card {

            background: var(--dark-bg);

            border: 1px solid var(--border-color);

            border-radius: 20px;

            padding: 2rem;

            margin: 1rem 0;

            box-shadow: var(--shadow-md);

            transition: all 0.3s ease;

            position: relative;

            overflow: hidden;

        }

        

        

        

        .feature-card:hover {

            transform: translateY(-8px);

            box-shadow: var(--shadow-lg);

        }

        

        /* 🎨 Button Enhancements */

        .btn-primary {

            background: var(--primary-gradient) !important;

            border: none !important;

            border-radius: 12px !important;

            padding: 0.75rem 2rem !important;

            font-weight: 600 !important;

            font-size: 1rem !important;

            transition: all 0.3s ease !important;

            box-shadow: var(--shadow-sm) !important;

        }

        

        .btn-primary:hover {

            transform: translateY(-2px) !important;

            box-shadow: var(--shadow-lg) !important;

        }

        

        .btn-secondary {

            background: var(--red) !important;

            border: none !important;

            border-radius: 12px !important;

            padding: 0.75rem 1.5rem !important;

            font-weight: 600 !important;

            transition: all 0.3s ease !important;

        }

        

        .btn-success {

            background: var(--success-gradient) !important;

            border: none !important;

            border-radius: 12px !important;

            padding: 0.75rem 1.5rem !important;

            font-weight: 600 !important;

        }

        

        .btn-warning {

            background: var(--warning-gradient) !important;

            border: none !important;

            border-radius: 12px !important;

            padding: 0.75rem 1.5rem !important;

            font-weight: 600 !important;

        }

        

        /* 📝 Input Field Styling */

        .input-field {

            border: 2px solid var(--border-color) !important;

            border-radius: 12px !important;

            padding: 1rem !important;

            font-size: 1rem !important;

            transition: all 0.3s ease !important;

            background: var(--dark-bg) !important;

        }

        

        .input-field:focus {

            border-color: #667eea !important;

            box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;

            outline: none !important;

        }

        

        /* 📊 Progress Indicators */

        .progress-bar {

            background: var(--primary-gradient);

            height: 8px;

            border-radius: 4px;

            transition: width 0.3s ease;

        }

        

        .progress-container {

            background: var(--border-color);

            height: 8px;

            border-radius: 4px;

            overflow: hidden;

        }

        

        /* 🎯 Grid Layouts */

        .grid-2 {

            display: grid;

            grid-template-columns: 1fr 1fr;

            gap: 2rem;

        }

        

        .grid-3 {

            display: grid;

            grid-template-columns: repeat(3, 1fr);

            gap: 1.5rem;

        }

        

        .grid-4 {

            display: grid;

            grid-template-columns: repeat(4, 1fr);

            gap: 1rem;

        }

        

        /* 📱 Responsive Design */

        @media (max-width: 1200px) {

            .grid-4 { grid-template-columns: repeat(2, 1fr); }

            .grid-3 { grid-template-columns: repeat(2, 1fr); }

        }

        

        @media (max-width: 768px) {

            .gradio-container {

                padding: 0 10px !important;

            }

            

            .grid-2, .grid-3, .grid-4 {

                grid-template-columns: 1fr;

                gap: 1rem;

            }

            

            .status-bar {

                grid-template-columns: 1fr;

                gap: 1rem;

                padding: 1rem;

            }

            

            .app-title {

                font-size: 2rem;

            }

            

            .feature-card {

                padding: 1.5rem;

            }

        }

        

        /* 🌟 Animation Classes */

        .fade-in {

            animation: fadeIn 0.5s ease-in;

        }

        

        .slide-up {

            animation: slideUp 0.6s ease-out;

        }

        

        @keyframes fadeIn {

            from { opacity: 0; }

            to { opacity: 1; }

        }

        

        @keyframes slideUp {

            from {

                opacity: 0;

                transform: translateY(30px);

            }

            to {

                opacity: 1;

                transform: translateY(0);

            }

        }

        

        /* 🎨 Accent Colors */

        .accent-blue { border-left: 4px solid #3b82f6; }

        .accent-green { border-left: 4px solid #10b981; }

        .accent-purple { border-left: 4px solid #8b5cf6; }

        .accent-orange { border-left: 4px solid #f59e0b; }

        .accent-red { border-left: 4px solid #ef4444; }

        

        /* 🔍 Search Enhancement */

        .search-container {

            position: relative;

            margin-bottom: 2rem;

        }

        

        .search-input {

            width: 100%;

            padding: 1rem 1rem 1rem 3rem;

            border: 2px solid var(--border-color);

            border-radius: 25px;

            font-size: 1.1rem;

            transition: all 0.3s ease;

        }

        

        .search-input:focus {

            border-color: #667eea;

            box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);

        }

        

        .search-icon {

            position: absolute;

            left: 1rem;

            top: 50%;

            transform: translateY(-50%);

            color: var(--text-secondary);

        }

        

        /* 📈 Analytics Dashboard */

        .analytics-grid {

            display: grid;

            grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));

            gap: 1.5rem;

            margin: 2rem 0;

        }

        

        .stat-card {

            background: var(--dark-bg);

            border-radius: 15px;

            padding: 1.5rem;

            box-shadow: var(--shadow-sm);

            border: 1px solid var(--border-color);

            transition: all 0.3s ease;

        }

        

        .stat-card:hover {

            transform: translateY(-3px);

            box-shadow: var(--shadow-md);

        }

        

        .stat-value {

            font-size: 2rem;

            font-weight: 700;

            color: #667eea;

            margin-bottom: 0.5rem;

        }

        

        .stat-label {

            color: var(--text-secondary);

            font-size: 0.9rem;

            text-transform: uppercase;

            letter-spacing: 0.5px;

        }





        /* 🚀 Loading States */

        .loading {

            position: relative;

            overflow: hidden;

        }



        .loading::after {

            content: '';

            position: absolute;

            top: 0;

            left: -100%;

            width: 100%;

            height: 100%;

            background: linear-gradient(90deg, transparent, rgba(255,255,255,0.4), transparent);

            animation: loading 1.5s infinite;

        }

        

        @keyframes loading {

            0% { left: -100%; }

            100% { left: 100%; }

        }

        

        /* 🎨 Custom Scrollbar */

        ::-webkit-scrollbar {

            width: 8px;

        }

        

        ::-webkit-scrollbar-track {

            background: var(--light-bg);

        }

        

        ::-webkit-scrollbar-thumb {

            background: var(--primary-gradient);

            border-radius: 4px;

        }

        

        ::-webkit-scrollbar-thumb:hover {

            background: #5a67d8;

        }

        """

    # 🔧 Settings Management Methods

    def _refresh_all_settings(self):
        """Refresh all settings and return updated values."""
        try:
            settings = self.settings_manager.get_current_settings()

            # Create overview for display
            overview = {}
            for var_name, config in settings.items():
                overview[var_name] = {
                    "value": config["value"] if config["is_set"] else "Not set",
                    "source": config["source"],
                    "status": (
                        "✅ Valid"
                        if config["is_valid"]
                        else "❌ Invalid" if config["is_set"] else "⚠️ Not set"
                    ),
                    "required": config["is_required"],
                }

            # Return status and all component updates
            status_msg = "🔄 Settings refreshed successfully"

            # Get current values for form fields
            gemini_val = settings.get("GEMINI_API_KEY", {}).get("raw_value", "")
            pinecone_val = settings.get("PINECONE_API_KEY", {}).get("raw_value", "")
            openai_val = settings.get("OPENAI_API_KEY", {}).get("raw_value", "")
            tavily_val = settings.get("TAVILY_API_KEY", {}).get("raw_value", "")

            pinecone_env_val = settings.get("PINECONE_ENVIRONMENT", {}).get(
                "raw_value", "us-east-1"
            )
            pinecone_index_val = settings.get("PINECONE_INDEX_NAME", {}).get(
                "raw_value", "rag-ai-index"
            )
            gradio_share_val = settings.get("GRADIO_SHARE", {}).get(
                "raw_value", "false"
            )
            port_val = int(settings.get("PORT", {}).get("raw_value", "7860"))

            return (
                status_msg,
                overview,
                gemini_val,
                settings.get("GEMINI_API_KEY", {}).get("value", "Not configured"),
                pinecone_val,
                settings.get("PINECONE_API_KEY", {}).get("value", "Not configured"),
                openai_val,
                settings.get("OPENAI_API_KEY", {}).get("value", "Not configured"),
                tavily_val,
                settings.get("TAVILY_API_KEY", {}).get("value", "Not configured"),
                pinecone_env_val,
                pinecone_index_val,
                gradio_share_val,
                port_val,
                "✅ Settings loaded",
            )

        except Exception as e:
            self._log_safe(f" Error refreshing settings: {e}", "error")
            return (
                f" Error refreshing settings: {str(e)}",
                {},
                "",
                "Error loading",
                "",
                "Error loading",
                "",
                "Error loading",
                "",
                "Error loading",
                "us-east-1",
                "rag-ai-index",
                "false",
                7860,
                "❌ Error loading",
            )

    def _save_setting(self, var_name: str, value: str, storage_type: str) -> str:
        """Save a setting with the specified storage type."""
        try:
            result = self.settings_manager.update_setting(var_name, value, storage_type)

            if result["success"]:
                self._log_safe(f" Saved {var_name} to {storage_type}")
                return result["status"]
            else:
                self._log_safe(
                    f" Failed to save {var_name}: {result.get('error', 'Unknown error')}",
                    "error",
                )
                return result["status"]

        except Exception as e:
            self._log_safe(f" Error saving {var_name}: {e}", "error")
            return f"❌ Error: {str(e)}"

    def _test_api_connection(self, var_name: str) -> str:
        """Test API connection for the specified variable with optimized performance."""
        try:
            # Show testing status immediately
            status_message = f"🔄 Testing {var_name} connection..."
            self._log_safe(status_message)

            # For Gemini, check if we've tested recently (use cached result)
            if var_name == "GEMINI_API_KEY" and hasattr(
                self.settings_manager, "_gemini_last_test_time"
            ):
                current_time = time.time()
                if (
                    self.settings_manager._gemini_last_test_time
                    and current_time - self.settings_manager._gemini_last_test_time < 10
                ):

                    self._log_safe(
                        f"✅ Using cached {var_name} test result (tested recently)"
                    )
                    return "✅ Gemini API connected (cached result)"

            # Perform the actual test
            result = self.settings_manager.test_connection(var_name)

            if result["success"]:
                self._log_safe(f"✅ {var_name} connection test successful")
            else:
                self._log_safe(
                    f" {var_name} connection test failed: {result.get('error', 'Unknown error')}",
                    "warning",
                )

            return result["status"]

        except Exception as e:
            self._log_safe(f" Error testing {var_name}: {e}", "error")
            return f" Test error: {str(e)}"

    def _load_from_env_file(self) -> Tuple[str, Dict[str, Any]]:
        """Load settings from .env file."""
        try:
            result = self.settings_manager.load_from_env_file()

            if result["success"]:
                self._log_safe(
                    f" Loaded {result['loaded_count']} variables from .env file"
                )

                # Get updated overview
                settings = self.settings_manager.get_current_settings()
                overview = {}
                for var_name, config in settings.items():
                    overview[var_name] = {
                        "value": config["value"] if config["is_set"] else "Not set",
                        "source": config["source"],
                        "status": (
                            "✅ Valid"
                            if config["is_valid"]
                            else "❌ Invalid" if config["is_set"] else "⚠️ Not set"
                        ),
                        "required": config["is_required"],
                    }

                return result["status"], overview
            else:
                self._log_safe(
                    f" Failed to load from .env: {result.get('error', 'Unknown error')}",
                    "error",
                )
                return result["status"], {}

        except Exception as e:
            self._log_safe(f" Error loading from .env file: {e}", "error")
            return f" Error: {str(e)}", {}

    def _clear_settings_cache(self) -> Tuple[str, Dict[str, Any]]:
        """Clear settings cache."""
        try:
            result = self.settings_manager.clear_cache()

            if result["success"]:
                self._log_safe(f" Cleared {result['cleared_count']} cached variables")

                # Get updated overview
                settings = self.settings_manager.get_current_settings()
                overview = {}
                for var_name, config in settings.items():
                    overview[var_name] = {
                        "value": config["value"] if config["is_set"] else "Not set",
                        "source": config["source"],
                        "status": (
                            "✅ Valid"
                            if config["is_valid"]
                            else "❌ Invalid" if config["is_set"] else "⚠️ Not set"
                        ),
                        "required": config["is_required"],
                    }

                return result["status"], overview
            else:
                self._log_safe(
                    f" Failed to clear cache: {result.get('error', 'Unknown error')}",
                    "error",
                )
                return result["status"], {}

        except Exception as e:
            self._log_safe(f" Error clearing cache: {e}", "error")
            return f" Error: {str(e)}", {}

    def _export_settings(self) -> str:
        """Export settings (basic version for main button)."""
        try:
            result = self.settings_manager.export_settings(include_sensitive=False)

            if result["success"]:
                self._log_safe(" Settings exported successfully")
                return " Settings exported (check Storage & Export tab for details)"
            else:
                self._log_safe(
                    f" Failed to export settings: {result.get('error', 'Unknown error')}",
                    "error",
                )
                return f" Export failed: {result.get('error', 'Unknown error')}"

        except Exception as e:
            self._log_safe(f" Error exporting settings: {e}", "error")
            return f" Error: {str(e)}"

    def _generate_export(

        self, include_sensitive: bool, export_format: str

    ) -> Tuple[str, str]:
        """Generate detailed export output."""
        try:
            result = self.settings_manager.export_settings(
                include_sensitive=include_sensitive
            )

            if not result["success"]:
                return (
                    f" Export failed: {result.get('error', 'Unknown error')}",
                    " Export failed",
                )

            settings_data = result["settings"]

            if export_format == "JSON":
                import json

                export_content = json.dumps(
                    {
                        "export_info": {
                            "timestamp": result["export_timestamp"],
                            "include_sensitive": include_sensitive,
                            "format": "JSON",
                        },
                        "settings": settings_data,
                    },
                    indent=2,
                )

            elif export_format == "ENV":
                export_lines = [
                    "# Environment Variables Export",
                    f"# Generated on {result['export_timestamp']}",
                    f"# Include sensitive: {include_sensitive}",
                    "",
                ]

                for var_name, config in settings_data.items():
                    if config["is_set"]:
                        value = config["value"]
                        export_lines.append(f"# {config['description']}")
                        export_lines.append(f"{var_name}={value}")
                        export_lines.append("")

                export_content = "\n".join(export_lines)

            else:
                return " Invalid export format", " Invalid format"

            self._log_safe(
                f" Generated {export_format} export with {len(settings_data)} variables"
            )
            return export_content, f" {export_format} export generated successfully"

        except Exception as e:
            self._log_safe(f" Error generating export: {e}", "error")
            return f" Error: {str(e)}", " Export generation failed"

    def _process_documents(self, files) -> Tuple[str, str, str]:
        """

        Process uploaded documents with progress tracking.



        Args:

            files: List of uploaded files



        Returns:

            Tuple of (processing results, status, stats)

        """
        if not files:
            return "No files uploaded.", "Ready ", self._get_stats_string()

        try:
            self._log_safe(f"Processing {len(files)} uploaded files")

            results = []
            successful = 0

            for i, file in enumerate(files):
                try:
                    # Process each file
                    result = self.rag_system.process_document(file.name)

                    if result.get("status") == "success":
                        successful += 1
                        self.total_documents += 1
                        self.total_chunks += result.get("chunks_processed", 0)

                        results.append(
                            f"{os.path.basename(file.name)}: "
                            f"{result.get('chunks_processed', 0)} chunks processed"
                        )
                    else:
                        results.append(
                            f"❌ {os.path.basename(file.name)}: "
                            f"{result.get('error', 'Processing failed')}"
                        )

                except Exception as e:
                    results.append(f"❌ {os.path.basename(file.name)}: {str(e)}")

            # Summary
            summary = (
                f"\nSummary: {successful}/{len(files)} files processed successfully"
            )
            output = "\n".join(results) + summary

            status = (
                f"Processed {successful}/{len(files)} files "
                if successful > 0
                else "Processing failed ❌"
            )

            return output, status, self._get_stats_string()

        except Exception as e:
            self._log_safe(f" Error processing documents: {str(e)}", "error")
            return f" Error: {str(e)}", "Error ", self._get_stats_string()

    def _process_urls(

        self, urls_text: str, max_depth: int = 1, follow_links: bool = True

    ) -> Tuple[str, str, str, str]:
        """

        Process URLs with advanced crawling options and progress tracking.



        Args:

            urls_text: Text containing URLs (one per line)

            max_depth: Maximum crawling depth

            follow_links: Whether to follow links



        Returns:

            Tuple of (processing results, status, stats, progress_info)

        """
        if not urls_text.strip():
            return (
                "No URLs provided.",
                "Ready 🟢",
                self._get_stats_string(),
                "Ready to process URLs...",
            )

        try:
            urls = [url.strip() for url in urls_text.split("\n") if url.strip()]
            self._log_safe(
                f"Processing {len(urls)} URLs with depth={max_depth}, follow_links={follow_links}"
            )

            results = []
            successful = 0
            progress_msg = f"🚀 Starting crawl of {len(urls)} URLs..."

            for i, url in enumerate(urls):
                progress_msg = f"🔄 Processing URL {i+1}/{len(urls)}: {url[:50]}..."
                try:
                    # Process each URL with advanced options
                    result = self.rag_system.process_url(
                        url, max_depth=max_depth, follow_links=follow_links
                    )

                    if result.get("status") == "success":
                        successful += 1
                        self.total_documents += 1
                        self.total_chunks += result.get("chunks_processed", 0)

                        # Enhanced result display with crawling info
                        chunks = result.get("chunks_processed", 0)
                        linked_docs = result.get("linked_documents_processed", 0)
                        depth = result.get("depth", 0)

                        result_text = f"✅ {url}:\n"
                        result_text += f"   📄 {chunks} chunks processed"
                        if linked_docs > 0:
                            result_text += f"\n   🔗 {linked_docs} linked pages found"
                        if depth > 0:
                            result_text += f"\n   🕷️ Crawled to depth {depth}"

                        results.append(result_text)
                    else:
                        error_msg = result.get("error", "Processing failed")
                        results.append(f"❌ {url}: {error_msg}")

                        # Add helpful hints for common crawling issues
                        if "depth" in error_msg.lower():
                            results.append("   💡 Try reducing crawl depth")
                        elif "timeout" in error_msg.lower():
                            results.append(
                                "   💡 Site may be slow, try single page mode"
                            )
                        elif "robots" in error_msg.lower():
                            results.append(
                                "   💡 Site blocks crawlers, try direct URL only"
                            )

                except Exception as e:
                    results.append(f"❌ {url}: {str(e)}")

            # Enhanced Summary with crawling stats
            total_linked = sum(
                result.get("linked_documents_processed", 0)
                for result in [
                    self.rag_system.process_url(url, max_depth, follow_links)
                    for url in urls
                ]
                if result.get("status") == "success"
            )

            summary = f"\n" + "=" * 50
            summary += f"\n📊 **CRAWLING SUMMARY**"
            summary += f"\n✅ URLs processed: {successful}/{len(urls)}"
            if follow_links and max_depth > 1:
                summary += f"\n🔗 Linked pages discovered: {total_linked}"
                summary += f"\n🕷️ Max crawl depth: {max_depth}"
            summary += f"\n📄 Total chunks: {self.total_chunks}"
            summary += "\n" + "=" * 50

            output = "\n".join(results) + summary

            status = (
                f"Processed {successful}/{len(urls)} URLs "
                if successful > 0
                else "Processing failed "
            )

            final_progress = (
                f"✅ Completed! Processed {successful}/{len(urls)} URLs successfully"
            )
            return output, status, self._get_stats_string(), final_progress

        except Exception as e:
            self._log_safe(f" Error processing URLs: {str(e)}", "error")
            error_progress = f" Error occurred during processing"
            return (
                f" Error: {str(e)}",
                "Error ",
                self._get_stats_string(),
                error_progress,
            )

    def _process_query(

        self,

        query: str,

        include_sources: bool = True,

        max_results: int = 5,

        use_live_search: bool = False,

        search_depth: str = "basic",

        time_range: str = "month",

        search_mode: str = "auto",

    ) -> Tuple[str, str, Dict[str, Any], str, str]:
        """

        Process a user query with enhanced response formatting and live search options.



        Args:

            query: User query string

            include_sources: Whether to include source information

            max_results: Maximum number of results to return

            use_live_search: Whether to use live web search

            search_depth: Search depth for live search

            time_range: Time range for live search



        Returns:

            Tuple of (response, confidence, sources, status, stats)

        """
        if not query.strip():
            return (
                "Please enter a question.",
                "",
                {},
                "Ready 🟢",
                self._get_stats_string(),
            )

        try:
            # ✅ Enhanced search type detection
            search_type_map = {
                "auto": "🤖 Auto",
                "local_only": "📚 Local Only",
                "live_only": "🌐 Live Only",
                "hybrid": "🔄 Hybrid",
            }
            search_type = search_type_map.get(search_mode, "🤖 Auto")

            # 🔄 Backward compatibility: if use_live_search is True but mode is auto, use hybrid
            if use_live_search and search_mode == "auto":
                search_mode = "hybrid"
                search_type = "🔄 Hybrid"

            self._log_safe(
                f" Processing query ({search_type}): {query[:100]}... "
                f"(mode: {search_mode}, sources: {include_sources}, max_results: {max_results})"
            )

            # 🚀 Route query based on search mode
            if search_mode in ["live_only", "hybrid"] or use_live_search:
                # Use enhanced RAG system with search mode
                result = self.rag_system.query(
                    query,
                    max_results=max_results,
                    use_live_search=(
                        search_mode in ["live_only", "hybrid"] or use_live_search
                    ),
                    search_mode=search_mode,
                )
            else:
                # Use traditional local RAG system
                result = self.rag_system.query(
                    query, max_results=max_results, search_mode=search_mode
                )

            self.query_count += 1

            response = result.get("response", "No response generated.")
            confidence = result.get("confidence", 0.0)
            sources = result.get("sources", [])

            # 🎯 Format confidence display with search type indicator
            confidence_text = f"🎯 Confidence: {confidence:.1%}"
            if confidence >= 0.8:
                confidence_text += " 🟢 High"
            elif confidence >= 0.5:
                confidence_text += " 🟡 Medium"
            else:
                confidence_text += " 🔴 Low"

            # Add processing details with search type
            context_items = result.get("context_items", 0)
            processing_time = result.get("processing_time", 0)
            search_indicator = "🌐" if use_live_search else "📚"
            confidence_text += f" | {search_indicator} {search_type} | ⚡ {processing_time:.2f}s | 📄 {context_items} items"

            # 📊 Format sources for display based on user preference
            sources_display = {}
            if include_sources and sources:
                # Limit sources based on max_results
                limited_sources = sources[:max_results]
                sources_display = {
                    "confidence": f"{confidence:.3f}",
                    "total_sources": len(sources),
                    "showing": len(limited_sources),
                    "max_requested": max_results,
                    "sources": limited_sources,
                    "search_type": search_type,
                    "query_options": {
                        "include_sources": include_sources,
                        "max_results": max_results,
                        "use_live_search": use_live_search,
                        "search_depth": search_depth if use_live_search else None,
                        "time_range": time_range if use_live_search else None,
                    },
                }

                # 🌐 Add live search specific metadata
                if use_live_search:
                    sources_display.update(
                        {
                            "live_search_params": {
                                "search_depth": search_depth,
                                "time_range": time_range,
                                "routing_decision": result.get(
                                    "routing_decision", "live_search"
                                ),
                            }
                        }
                    )

            elif not include_sources:
                sources_display = {
                    "message": "🔒 Sources hidden by user preference",
                    "total_sources": len(sources),
                    "search_type": search_type,
                    "query_options": {
                        "include_sources": include_sources,
                        "max_results": max_results,
                        "use_live_search": use_live_search,
                    },
                }

            # 📈 Enhanced status with search type
            status_icon = "🌐" if use_live_search else "📚"
            status = f"✅ {status_icon} Query processed (confidence: {confidence:.1%}, {len(sources)} sources)"

            return (
                response,
                confidence_text,
                sources_display,
                status,
                self._get_stats_string(),
            )

        except Exception as e:
            self._log_safe(f" Error processing query: {str(e)}", "error")
            return (
                f" Error: {str(e)}",
                "Error",
                {},
                "Error ",
                self._get_stats_string(),
            )

    def _process_live_query(

        self, query: str, max_results: int, search_depth: str, time_range: str

    ) -> Dict[str, Any]:
        """

        Process query using live search via MCP Tavily integration.



        Args:

            query: User query

            max_results: Maximum results to return

            search_depth: Search depth parameter

            time_range: Time range for search



        Returns:

            Dictionary with search results and metadata

        """
        try:
            self._log_safe(f" Performing live search with Tavily API...")

            # 🚀 Use MCP Tavily tool for live search
            # This will be the actual MCP integration point
            search_results = self._call_tavily_mcp(
                query, max_results, search_depth, time_range
            )

            # 🔄 Process and format results for RAG response generation
            if search_results and search_results.get("results"):
                # Format for response generator
                formatted_context = []
                for result in search_results["results"]:
                    formatted_context.append(
                        {
                            "text": result.get("content", ""),
                            "source": result.get("url", "web_search"),
                            "title": result.get("title", "Web Result"),
                            "score": result.get("score", 0.0),
                            "metadata": {
                                "type": "web_result",
                                "search_engine": "tavily",
                                "url": result.get("url", ""),
                                "title": result.get("title", ""),
                            },
                        }
                    )

                # 🧠 Generate response using the response generator with live context
                if hasattr(self.rag_system, "response_generator"):
                    response_result = (
                        self.rag_system.response_generator.generate_response(
                            query, formatted_context
                        )
                    )

                    # 📊 Combine live search metadata with response
                    response_result.update(
                        {
                            "context_items": len(formatted_context),
                            "search_type": "live_web",
                            "routing_decision": "live_search",
                            "live_search_params": {
                                "search_depth": search_depth,
                                "time_range": time_range,
                                "total_web_results": len(search_results["results"]),
                            },
                        }
                    )

                    return response_result
                else:
                    # 📝 Fallback: simple response formatting
                    combined_content = "\n\n".join(
                        [
                            f"**{result.get('title', 'Web Result')}**\n{result.get('content', '')}"
                            for result in search_results["results"][:3]
                        ]
                    )

                    return {
                        "response": f"Based on live web search:\n\n{combined_content}",
                        "sources": search_results["results"],
                        "confidence": 0.8,
                        "context_items": len(search_results["results"]),
                        "search_type": "live_web",
                    }
            else:
                return {
                    "response": "No live search results found. Please try a different query or check your internet connection.",
                    "sources": [],
                    "confidence": 0.0,
                    "context_items": 0,
                    "error": "No live search results",
                }

        except Exception as e:
            self._log_safe(f" Live search error: {str(e)}", "error")
            # 🔄 Fallback to local search
            self._log_safe(" Falling back to local search...", "warning")
            return self.rag_system.query(query, max_results=max_results)

    def _call_tavily_mcp(

        self, query: str, max_results: int, search_depth: str, time_range: str

    ) -> Dict[str, Any]:
        """

        Call Tavily API using the live search module.



        Args:

            query: Search query

            max_results: Maximum results

            search_depth: Search depth

            time_range: Time range



        Returns:

            Tavily search results

        """
        try:
            # 🌐 Use the live search module with Tavily Python SDK
            from src.rag.live_search import LiveSearchManager

            self._log_safe(
                f" Tavily API call: query='{query}', depth={search_depth}, range={time_range}"
            )

            # ✅ Initialize live search manager
            live_search = LiveSearchManager()

            # 🚀 Perform the search using Tavily Python SDK
            search_results = live_search.search_web(
                query=query,
                max_results=max_results,
                search_depth=search_depth,
                time_range=time_range,
            )

            # 📊 Format results for UI consumption
            if (
                search_results
                and search_results.get("results")
                and not search_results.get("error")
            ):
                formatted_results = []
                for result in search_results.get("results", []):
                    formatted_results.append(
                        {
                            "title": result.get("title", ""),
                            "content": result.get("content", ""),
                            "url": result.get("url", ""),
                            "score": result.get("score", 0.0),
                            "published_date": result.get("published_date", ""),
                        }
                    )

                return {
                    "results": formatted_results,
                    "total_results": len(formatted_results),
                    "search_params": {
                        "query": query,
                        "max_results": max_results,
                        "search_depth": search_depth,
                        "time_range": time_range,
                    },
                    "status": "success",
                    "analytics": search_results.get("analytics", {}),
                }
            else:
                # 🚨 Handle search failure
                error_msg = search_results.get("error", "Unknown search error")
                self._log_safe(f" Tavily search failed: {error_msg}", "warning")

                return {
                    "results": [],
                    "total_results": 0,
                    "search_params": {
                        "query": query,
                        "max_results": max_results,
                        "search_depth": search_depth,
                        "time_range": time_range,
                    },
                    "status": "failed",
                    "error": error_msg,
                }

        except Exception as e:
            self._log_safe(f" Tavily API call failed: {str(e)}", "error")
            return {
                "results": [],
                "total_results": 0,
                "error": str(e),
                "status": "error",
            }

    def _refresh_knowledge_base(

        self,

    ) -> Tuple[Dict[str, Any], Dict[str, Any], List[List[str]]]:
        """

        Refresh knowledge base information with real data from vector DB and embedding model.



        Returns:

            Tuple of (kb_stats, embedding_model_status, document_list)

        """
        try:
            # Get real knowledge base statistics
            kb_info = self._get_real_kb_stats()

            # Get embedding model information
            embedding_info = self._get_embedding_model_info()

            # 📊 Knowledge Base Stats
            kb_stats = {
                "total_documents": kb_info.get("total_documents", self.total_documents),
                "total_chunks": kb_info.get("total_chunks", self.total_chunks),
                "storage_size": f"{kb_info.get('total_chunks', self.total_chunks) * 0.5:.1f} MB",
                "last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                "vector_db_status": kb_info.get("vector_db_status", "Unknown"),
                "embedding_model": embedding_info.get("model_name", "Unknown"),
                "embedding_status": embedding_info.get("status", "Unknown"),
                "index_health": kb_info.get("index_health", "Unknown"),
            }

            # 🤖 Embedding Model Status
            embedding_status = {
                "model_name": embedding_info.get("model_name", "Unknown"),
                "provider": embedding_info.get("provider", "Unknown"),
                "status": embedding_info.get("status", "Unknown"),
                "api_status": embedding_info.get("api_status", "Unknown"),
                "dimension": embedding_info.get("dimension", "Unknown"),
                "performance": {
                    "total_requests": embedding_info.get("total_requests", 0),
                    "success_rate": embedding_info.get("success_rate", "0%"),
                    "cache_hit_rate": embedding_info.get("cache_hit_rate", "0%"),
                    "batch_size": embedding_info.get("batch_size", "Unknown"),
                    "max_text_length": embedding_info.get("max_text_length", "Unknown"),
                    "caching_enabled": embedding_info.get("caching_enabled", False),
                },
                "last_checked": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            }

            # Get real document list from vector DB
            documents = self._get_real_document_list()

            # If no real documents, show helpful message
            if not documents:
                documents = [
                    [
                        "📝 No documents yet",
                        "Info",
                        "0",
                        "Upload documents to get started",
                    ],
                    ["🔗 Try adding URLs", "Info", "0", "Use the 'Add URLs' tab"],
                    [
                        "📚 Knowledge base empty",
                        "Info",
                        "0",
                        "Start building your knowledge base!",
                    ],
                ]

            return kb_stats, embedding_status, documents

        except Exception as e:
            self._log_safe(f" Error refreshing knowledge base: {e}", "error")
            # Fallback stats
            fallback_kb_stats = {
                "total_documents": self.total_documents,
                "total_chunks": self.total_chunks,
                "storage_size": f"{self.total_chunks * 0.5:.1f} MB",
                "last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                "error": str(e),
            }

            fallback_embedding_status = {
                "model_name": "Error",
                "provider": "Unknown",
                "status": "❌ Error",
                "api_status": "❌ Error",
                "dimension": "Unknown",
                "performance": {"error": str(e)},
                "last_checked": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            }

            return fallback_kb_stats, fallback_embedding_status, []

    def _get_real_kb_stats(self) -> Dict[str, Any]:
        """Get real knowledge base statistics from the RAG system."""
        try:
            # 🔍 Get embedding model info first
            embedding_model_info = self._get_embedding_model_info()

            if hasattr(self.rag_system, "vector_db") and self.rag_system.vector_db:
                # Try to get stats from vector DB
                vector_stats = (
                    self.rag_system.vector_db.get_stats()
                    if hasattr(self.rag_system.vector_db, "get_stats")
                    else {}
                )

                return {
                    "total_documents": vector_stats.get(
                        "total_vectors", self.total_documents
                    ),
                    "total_chunks": vector_stats.get(
                        "total_vectors", self.total_chunks
                    ),
                    "vector_db_status": "✅ Connected" if vector_stats else "⚠️ Limited",
                    "embedding_model": embedding_model_info.get(
                        "model_name", "Unknown"
                    ),
                    "embedding_model_status": embedding_model_info.get(
                        "status", "Unknown"
                    ),
                    "embedding_dimension": embedding_model_info.get(
                        "dimension", "Unknown"
                    ),
                    "embedding_provider": embedding_model_info.get(
                        "provider", "Unknown"
                    ),
                    "index_health": (
                        "✅ Healthy"
                        if vector_stats.get("total_vectors", 0) > 0
                        else "⚠️ Empty"
                    ),
                }
            else:
                return {
                    "total_documents": self.total_documents,
                    "total_chunks": self.total_chunks,
                    "vector_db_status": "❌ Not Connected",
                    "embedding_model": embedding_model_info.get(
                        "model_name", "Unknown"
                    ),
                    "embedding_model_status": embedding_model_info.get(
                        "status", "❌ Not Available"
                    ),
                    "embedding_dimension": embedding_model_info.get(
                        "dimension", "Unknown"
                    ),
                    "embedding_provider": embedding_model_info.get(
                        "provider", "Unknown"
                    ),
                    "index_health": "❌ Unavailable",
                }
        except Exception as e:
            self._log_safe(f"Could not get real KB stats: {e}", "warning")
            return {}

    def _get_real_document_list(self) -> List[List[str]]:
        """Get real document list from the RAG system."""
        try:
            documents = []

            # Try to get document metadata from vector DB
            if hasattr(self.rag_system, "vector_db") and self.rag_system.vector_db:
                # Get unique sources from vector DB
                if hasattr(self.rag_system.vector_db, "get_unique_sources"):
                    sources = self.rag_system.vector_db.get_unique_sources()
                    for source_info in sources:
                        source_name = source_info.get("source", "Unknown")
                        doc_type = self._get_document_type(source_name)
                        chunk_count = source_info.get("chunk_count", 0)
                        added_date = source_info.get("added_date", "Unknown")

                        documents.append(
                            [source_name, doc_type, str(chunk_count), added_date]
                        )

                # If vector DB doesn't have get_unique_sources, try alternative approach
                elif hasattr(self.rag_system.vector_db, "list_documents"):
                    doc_list = self.rag_system.vector_db.list_documents()
                    for doc in doc_list:
                        documents.append(
                            [
                                doc.get("name", "Unknown"),
                                self._get_document_type(doc.get("name", "")),
                                str(doc.get("chunks", 0)),
                                doc.get("date", "Unknown"),
                            ]
                        )

            return documents

        except Exception as e:
            self._log_safe(f"Could not get real document list: {e}", "warning")
            return []

    def _get_document_type(self, filename: str) -> str:
        """Determine document type from filename."""
        if not filename:
            return "Unknown"

        filename_lower = filename.lower()
        if filename_lower.endswith(".pdf"):
            return "📄 PDF"
        elif filename_lower.endswith((".doc", ".docx")):
            return "📝 Word"
        elif filename_lower.endswith((".xls", ".xlsx")):
            return "📊 Excel"
        elif filename_lower.endswith((".ppt", ".pptx")):
            return "📈 PowerPoint"
        elif filename_lower.endswith(".csv"):
            return "📋 CSV"
        elif filename_lower.endswith((".txt", ".md")):
            return "📄 Text"
        elif "http" in filename_lower:
            return "🌐 Web"
        else:
            return "📄 Document"

    def _get_embedding_model_info(self) -> Dict[str, Any]:
        """

        🤖 Get comprehensive embedding model information.



        Returns:

            Dictionary with embedding model details

        """
        try:
            model_info = {
                "model_name": "Unknown",
                "status": "❌ Not Available",
                "dimension": "Unknown",
                "provider": "Unknown",
                "api_status": "❌ Not Connected",
            }

            # Check if embedding generator exists and is properly initialized
            if (
                hasattr(self.rag_system, "embedding_generator")
                and self.rag_system.embedding_generator
            ):
                embedding_gen = self.rag_system.embedding_generator

                # Get model name - check multiple possible attributes
                model_name = (
                    getattr(embedding_gen, "model", None)
                    or getattr(embedding_gen, "model_name", None)
                    or "gemini-embedding-exp-03-07"
                )  # Default Gemini model

                # Get API client status
                api_connected = (
                    hasattr(embedding_gen, "client")
                    and embedding_gen.client is not None
                )

                # Get configuration details
                config = getattr(embedding_gen, "config", {})

                model_info.update(
                    {
                        "model_name": model_name,
                        "status": "✅ Available" if api_connected else "⚠️ Limited",
                        "provider": (
                            "Google Gemini"
                            if "gemini" in model_name.lower()
                            else "Unknown"
                        ),
                        "api_status": (
                            "✅ Connected" if api_connected else "❌ Not Connected"
                        ),
                        "dimension": config.get("dimension", "3072"),  # Gemini default
                        "batch_size": config.get("batch_size", 5),
                        "max_text_length": config.get("max_text_length", 8192),
                        "caching_enabled": config.get("enable_caching", True),
                    }
                )

                # Get statistics if available
                if hasattr(embedding_gen, "get_statistics"):
                    try:
                        stats = embedding_gen.get_statistics()
                        model_info.update(
                            {
                                "total_requests": stats.get("total_requests", 0),
                                "successful_requests": stats.get(
                                    "successful_requests", 0
                                ),
                                "cache_hits": stats.get("cache_hits", 0),
                                "cache_hit_rate": f"{stats.get('cache_hit_rate', 0):.1f}%",
                                "success_rate": f"{stats.get('success_rate', 0):.1f}%",
                            }
                        )
                    except Exception as e:
                        self._log_safe(f"Could not get embedding stats: {e}", "warning")

                # Test API connection if possible (quick test)
                if api_connected:
                    try:
                        # Quick test to verify API is working
                        test_embedding = embedding_gen.generate_query_embedding("test")
                        if test_embedding:
                            model_info["api_status"] = "✅ Connected & Working"
                            model_info["status"] = "✅ Fully Operational"
                        else:
                            model_info["api_status"] = "⚠️ Connected but Limited"
                    except Exception as e:
                        model_info["api_status"] = f" Connection Error: {str(e)[:50]}"

            return model_info

        except Exception as e:
            self._log_safe(f"Error getting embedding model info: {e}", "error")
            return {
                "model_name": "Error",
                "status": " Error",
                "dimension": "Unknown",
                "provider": "Unknown",
                "api_status": f" Error: {str(e)[:50]}",
                "error": str(e),
            }

    def _run_health_check(self) -> Tuple[Dict[str, Any], List[List[str]], str]:
        """

        🩺 Run comprehensive real system health check.



        Returns:

            Tuple of (system status, component status, logs)

        """
        try:
            import psutil
            import time
            from datetime import timedelta

            # 📊 Real System Status
            start_time = time.time()

            # Get real system metrics
            memory_info = psutil.virtual_memory()
            cpu_percent = psutil.cpu_percent(interval=1)

            # Calculate uptime (approximate)
            boot_time = psutil.boot_time()
            uptime_seconds = time.time() - boot_time
            uptime = str(timedelta(seconds=int(uptime_seconds)))

            system_status = {
                "overall_health": "🟢 Healthy",
                "uptime": uptime,
                "memory_usage": f"{memory_info.percent:.1f}%",
                "memory_available": f"{memory_info.available / (1024**3):.1f} GB",
                "cpu_usage": f"{cpu_percent:.1f}%",
                "disk_usage": f"{psutil.disk_usage('/').percent:.1f}%",
                "last_check": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                "system_load": "Normal" if cpu_percent < 80 else "High",
            }

            # 🔍 Real Component Status Check
            components = []
            logs = []

            current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            logs.append(f"[{current_time}] INFO - System health check initiated")

            # 1. 🤖 Embedding Generator Check
            embedding_info = self._get_embedding_model_info()
            embedding_status = embedding_info.get("status", "❌ Unknown")
            embedding_details = f"{embedding_info.get('model_name', 'Unknown')} - {embedding_info.get('api_status', 'Unknown')}"
            components.append(
                ["🤖 Embedding Generator", embedding_status, embedding_details]
            )

            if "✅" in embedding_status:
                logs.append(
                    f"[{current_time}] INFO - Embedding generator: {embedding_details}"
                )
            else:
                logs.append(
                    f"[{current_time}] WARN - Embedding generator: {embedding_details}"
                )

            # 2. 🌲 Vector Database Check
            vector_db_status, vector_db_details = self._check_vector_db_health()
            components.append(
                ["🌲 Vector Database", vector_db_status, vector_db_details]
            )
            logs.append(f"[{current_time}] INFO - Vector database: {vector_db_details}")

            # 3. 📄 Document Processor Check
            doc_processor_status, doc_processor_details = (
                self._check_document_processor_health()
            )
            components.append(
                ["📄 Document Processor", doc_processor_status, doc_processor_details]
            )
            logs.append(
                f"[{current_time}] INFO - Document processor: {doc_processor_details}"
            )

            # 4. 🧠 Response Generator Check
            response_gen_status, response_gen_details = (
                self._check_response_generator_health()
            )
            components.append(
                [" Response Generator", response_gen_status, response_gen_details]
            )
            logs.append(
                f"[{current_time}] INFO - Response generator: {response_gen_details}"
            )

            # 5. 🌐 Web Interface Check
            components.append(
                ["🌐 Web Interface", "✅ Healthy", "Gradio running successfully"]
            )
            logs.append(f"[{current_time}] INFO - Web interface: Running on port 7860")

            # 6. 🔍 Live Search Check (if available)
            live_search_status, live_search_details = self._check_live_search_health()
            components.append(
                ["🔍 Live Search", live_search_status, live_search_details]
            )
            logs.append(f"[{current_time}] INFO - Live search: {live_search_details}")

            # Calculate overall health
            healthy_components = sum(1 for comp in components if "✅" in comp[1])
            total_components = len(components)
            health_percentage = (healthy_components / total_components) * 100

            if health_percentage >= 80:
                system_status["overall_health"] = "🟢 Healthy"
                logs.append(
                    f"[{current_time}] INFO - Overall system health: {health_percentage:.0f}% ({healthy_components}/{total_components} components healthy)"
                )
            elif health_percentage >= 60:
                system_status["overall_health"] = "🟡 Degraded"
                logs.append(
                    f"[{current_time}] WARN - System degraded: {health_percentage:.0f}% ({healthy_components}/{total_components} components healthy)"
                )
            else:
                system_status["overall_health"] = "🔴 Unhealthy"
                logs.append(
                    f"[{current_time}] ERROR - System unhealthy: {health_percentage:.0f}% ({healthy_components}/{total_components} components healthy)"
                )

            # Add performance metrics
            health_check_time = time.time() - start_time
            system_status["health_check_duration"] = f"{health_check_time:.2f}s"
            logs.append(
                f"[{current_time}] INFO - Health check completed in {health_check_time:.2f}s"
            )

            return system_status, components, "\n".join(logs)

        except Exception as e:
            self._log_safe(f"❌ Error running health check: {e}", "error")
            error_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            return (
                {
                    "overall_health": "🔴 Error",
                    "error": str(e),
                    "last_check": error_time,
                },
                [["System", "❌ Error", f"Health check failed: {str(e)}"]],
                f"[{error_time}] ERROR - Health check failed: {str(e)}",
            )

    def _check_vector_db_health(self) -> Tuple[str, str]:
        """🌲 Check Vector Database health status."""
        try:
            if hasattr(self.rag_system, "vector_db") and self.rag_system.vector_db:
                vector_db = self.rag_system.vector_db

                # Try to get health check from vector DB
                if hasattr(vector_db, "health_check"):
                    health_result = vector_db.health_check()
                    if health_result.get("status") == "healthy":
                        return (
                            "✅ Healthy",
                            f"Pinecone connected - {health_result.get('checks', {}).get('index_stats', 'OK')}",
                        )
                    else:
                        return (
                            "⚠️ Degraded",
                            f"Issues detected: {health_result.get('error', 'Unknown')}",
                        )

                # Fallback: check if we can get stats
                elif hasattr(vector_db, "get_stats"):
                    stats = vector_db.get_stats()
                    if stats.get("status") == "connected":
                        total_vectors = stats.get("total_vectors", 0)
                        return (
                            "✅ Healthy",
                            f"Pinecone connected - {total_vectors} vectors stored",
                        )
                    else:
                        return (
                            "❌ Error",
                            f"Connection failed: {stats.get('error', 'Unknown')}",
                        )

                else:
                    return (
                        "⚠️ Limited",
                        "Vector DB available but health check not implemented",
                    )
            else:
                return "❌ Not Available", "Vector database not initialized"

        except Exception as e:
            return "❌ Error", f"Health check failed: {str(e)[:50]}"

    def _check_document_processor_health(self) -> Tuple[str, str]:
        """📄 Check Document Processor health status."""
        try:
            if (
                hasattr(self.rag_system, "document_processor")
                and self.rag_system.document_processor
            ):
                # Check if document processor has required dependencies
                try:
                    # Test basic functionality
                    processor = self.rag_system.document_processor

                    # Check if it has the required methods
                    if hasattr(processor, "process_document"):
                        supported_formats = [
                            "PDF",
                            "DOCX",
                            "CSV",
                            "XLSX",
                            "PPTX",
                            "TXT",
                            "MD",
                        ]
                        return (
                            "✅ Healthy",
                            f"All formats supported: {', '.join(supported_formats)}",
                        )
                    else:
                        return "⚠️ Limited", "Basic functionality available"

                except ImportError as e:
                    return (
                        "❌ Dependencies Missing",
                        f"Missing libraries: {str(e)[:30]}",
                    )
            else:
                return "❌ Not Available", "Document processor not initialized"

        except Exception as e:
            return "❌ Error", f"Health check failed: {str(e)[:50]}"

    def _check_response_generator_health(self) -> Tuple[str, str]:
        """🧠 Check Response Generator health status."""
        try:
            if (
                hasattr(self.rag_system, "response_generator")
                and self.rag_system.response_generator
            ):
                response_gen = self.rag_system.response_generator

                # Check if it has required configuration
                config = getattr(response_gen, "config", {})

                # Check API keys availability
                gemini_key = config.get("gemini_api_key") or os.getenv("GEMINI_API_KEY")
                openai_key = config.get("openai_api_key") or os.getenv("OPENAI_API_KEY")

                if gemini_key:
                    return "✅ Healthy", "Gemini LLM available for response generation"
                elif openai_key:
                    return "✅ Healthy", "OpenAI LLM available for response generation"
                else:
                    return "⚠️ Limited", "No LLM API keys configured"
            else:
                return "❌ Not Available", "Response generator not initialized"

        except Exception as e:
            return "❌ Error", f"Health check failed: {str(e)[:50]}"

    def _check_live_search_health(self) -> Tuple[str, str]:
        """🔍 Check Live Search health status."""
        try:
            # Check if Tavily API key is available
            tavily_key = os.getenv("TAVILY_API_KEY")

            if tavily_key:
                # Check if live search components are available
                if (
                    hasattr(self.rag_system, "live_search_processor")
                    and self.rag_system.live_search_processor
                ):
                    return "✅ Healthy", "Tavily API configured - Live search available"
                elif (
                    hasattr(self.rag_system, "query_router")
                    and self.rag_system.query_router
                ):
                    return "✅ Healthy", "Query router available - Live search enabled"
                else:
                    return (
                        "⚠️ Limited",
                        "Tavily API key available but components not initialized",
                    )
            else:
                return (
                    "⚠️ Optional",
                    "Tavily API key not configured - Live search disabled",
                )

        except Exception as e:
            return "❌ Error", f"Health check failed: {str(e)[:50]}"

    def _get_stats_string(self) -> str:
        """Get formatted stats string."""
        return f"Documents: {self.total_documents} | Chunks: {self.total_chunks} | Queries: {self.query_count}"

    def launch(self, **kwargs):
        """

        Launch the Gradio interface.



        Args:

            **kwargs: Additional arguments for gr.Interface.launch()

        """
        if not self.interface:
            self._log_safe(" Interface not created", "error")
            return

        # Merge default config with provided kwargs
        launch_config = {
            "share": self.share,
            "server_name": "0.0.0.0",
            "server_port": 7860,
            "show_error": True,
            "quiet": False,
        }
        launch_config.update(kwargs)

        self._log_safe(f"Launching Gradio interface with config: {launch_config}")
        self.interface.launch(**launch_config)