payman / src /embedding /embedding_generator.py
satyamdev404's picture
Upload 31 files
e0aa230 verified
raw
history blame
16.5 kB
"""
Embedding Generator Module
This module is responsible for generating vector embeddings for text chunks
using Gemini Embedding v3 with complete API integration.
Technology: Gemini Embedding v3 (gemini-embedding-exp-03-07)
"""
import logging
import os
import time
import hashlib
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Union
import json
# Import Gemini API and caching libraries
try:
import google.generativeai as genai
from cachetools import TTLCache
except ImportError as e:
logging.warning(f"Some embedding libraries are not installed: {e}")
from utils.error_handler import EmbeddingError, error_handler, ErrorType
class EmbeddingGenerator:
"""
Generates vector embeddings for text chunks using Gemini Embedding v3 with full functionality.
Features:
- Gemini Embedding v3 API integration
- Batch processing with rate limiting
- Intelligent retry logic with exponential backoff
- Embedding caching mechanism
- Cost optimization
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize the EmbeddingGenerator with configuration.
Args:
config: Configuration dictionary with API parameters
"""
self.config = config or {}
self.logger = logging.getLogger(__name__)
# API Configuration
self.api_key = self.config.get("api_key", os.environ.get("GEMINI_API_KEY"))
self.model = self.config.get("model", "gemini-embedding-exp-03-07")
self.batch_size = self.config.get("batch_size", 5)
self.max_retries = self.config.get("max_retries", 3)
self.retry_delay = self.config.get("retry_delay", 1)
# Performance settings
self.rate_limit_delay = self.config.get("rate_limit_delay", 0.1)
self.max_text_length = self.config.get(
"max_text_length", 8192
) # ✨ 8K token limit for latest model
self.enable_caching = self.config.get("enable_caching", True)
self.cache_ttl = self.config.get("cache_ttl", 3600) # 1 hour
# Statistics tracking
self.stats = {
"total_requests": 0,
"successful_requests": 0,
"failed_requests": 0,
"cache_hits": 0,
"total_tokens_processed": 0,
"start_time": datetime.now(),
}
# Initialize cache
if self.enable_caching:
self.cache = TTLCache(maxsize=1000, ttl=self.cache_ttl)
else:
self.cache = None
# Validate and initialize API client
self._initialize_client()
def _initialize_client(self):
"""Initialize Gemini API client with validation."""
if not self.api_key:
self.logger.warning(
"No Gemini API key provided. Embeddings will not be generated."
)
self.client = None
return
try:
# Configure Gemini API
genai.configure(api_key=self.api_key)
# Test API connection
self._test_api_connection()
self.client = genai
self.logger.info("Gemini API client initialized successfully")
except Exception as e:
self.logger.error(f"Failed to initialize Gemini API client: {str(e)}")
self.client = None
def _test_api_connection(self):
"""Test API connection with a simple request."""
try:
# Test with a simple embedding request
test_result = genai.embed_content(
model=self.model,
content="test connection",
task_type="retrieval_document",
)
if not test_result.get("embedding"):
raise Exception("No embedding returned from test request")
self.logger.info("API connection test successful")
except Exception as e:
raise EmbeddingError(f"API connection test failed: {str(e)}")
@error_handler(ErrorType.EMBEDDING_GENERATION)
def generate_embeddings(self, texts: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Generate embeddings for a list of text chunks with full functionality.
Args:
texts: List of dictionaries containing text chunks and metadata
Each dict should have 'content' and 'metadata' keys
Returns:
List of dictionaries with original content, metadata, and embeddings
"""
if not self.client or not texts:
self.logger.warning("No API client or empty text list")
return texts
self.logger.info(f"Generating embeddings for {len(texts)} text chunks")
start_time = time.time()
# Filter and validate texts
valid_texts = self._validate_texts(texts)
if not valid_texts:
self.logger.warning("No valid texts to process")
return texts
# Process in batches to respect API limits
results = []
total_batches = (len(valid_texts) + self.batch_size - 1) // self.batch_size
for i in range(0, len(valid_texts), self.batch_size):
batch_num = (i // self.batch_size) + 1
batch = valid_texts[i : i + self.batch_size]
self.logger.info(
f"Processing batch {batch_num}/{total_batches} ({len(batch)} items)"
)
try:
batch_results = self._process_batch(batch)
results.extend(batch_results)
# Rate limiting between batches
if i + self.batch_size < len(valid_texts):
time.sleep(self.rate_limit_delay)
except Exception as e:
self.logger.error(f"Batch {batch_num} failed: {str(e)}")
# Add original items without embeddings
for item in batch:
item_copy = item.copy()
item_copy["embedding"] = []
item_copy["embedding_error"] = str(e)
results.append(item_copy)
# Update statistics
processing_time = time.time() - start_time
self.logger.info(f"Embedding generation completed in {processing_time:.2f}s")
return results
def _validate_texts(self, texts: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Validate and filter text inputs.
Args:
texts: List of text dictionaries
Returns:
List of valid text dictionaries
"""
valid_texts = []
for i, item in enumerate(texts):
if not isinstance(item, dict) or "content" not in item:
self.logger.warning(f"Invalid item at index {i}: missing 'content' key")
continue
content = item["content"]
if not content or not isinstance(content, str):
self.logger.warning(
f"Invalid content at index {i}: empty or non-string"
)
continue
# Truncate if too long
if len(content) > self.max_text_length:
self.logger.warning(
f"Truncating text at index {i}: {len(content)} -> {self.max_text_length} chars"
)
item = item.copy()
item["content"] = content[: self.max_text_length]
item["metadata"] = item.get("metadata", {})
item["metadata"]["truncated"] = True
item["metadata"]["original_length"] = len(content)
valid_texts.append(item)
return valid_texts
def _process_batch(self, batch: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Process a batch of text chunks to generate embeddings.
Args:
batch: List of dictionaries containing text chunks and metadata
Returns:
List of dictionaries with original content, metadata, and embeddings
"""
# Extract content and check cache
contents = []
cache_results = {}
for i, item in enumerate(batch):
content = item["content"]
# Check cache first
if self.cache is not None:
cache_key = self._get_cache_key(content)
if cache_key in self.cache:
cache_results[i] = self.cache[cache_key]
self.stats["cache_hits"] += 1
continue
contents.append((i, content))
# Generate embeddings for non-cached content
embeddings_map = {}
if contents:
content_texts = [content for _, content in contents]
embeddings = self._generate_with_retry(content_texts)
# Map embeddings back to indices
for j, (original_index, content) in enumerate(contents):
if j < len(embeddings):
embedding = embeddings[j]
embeddings_map[original_index] = embedding
# Cache the result
if self.cache is not None:
cache_key = self._get_cache_key(content)
self.cache[cache_key] = embedding
# 🔗 Combine results
results = []
for i, item in enumerate(batch):
result = item.copy()
# Add embedding from cache or new generation
if i in cache_results:
result["embedding"] = cache_results[i]
result["embedding_source"] = "cache"
elif i in embeddings_map:
result["embedding"] = embeddings_map[i]
result["embedding_source"] = "api"
else:
result["embedding"] = []
result["embedding_source"] = "failed"
self.logger.warning(f"Missing embedding for batch item {i}")
# Add embedding metadata
if result["embedding"]:
result["metadata"] = result.get("metadata", {})
result["metadata"].update(
{
"embedding_model": self.model,
"embedding_dimension": len(result["embedding"]),
"embedding_generated_at": datetime.now().isoformat(),
}
)
results.append(result)
return results
def _generate_with_retry(self, texts: List[str]) -> List[List[float]]:
"""
Generate embeddings with intelligent retry logic.
Args:
texts: List of text strings to embed
Returns:
List of embedding vectors (each is a list of floats)
"""
for attempt in range(self.max_retries):
try:
self.stats["total_requests"] += 1
# Generate embeddings using Gemini API
embeddings = []
for text in texts:
try:
# Track tokens
self.stats["total_tokens_processed"] += len(text.split())
# Call Gemini API
result = self.client.embed_content(
model=self.model,
content=text,
task_type="retrieval_document",
title="Document chunk for RAG system",
)
if result and "embedding" in result:
embeddings.append(result["embedding"])
else:
self.logger.warning(
f"No embedding in API response for text: {text[:50]}..."
)
embeddings.append([])
except Exception as e:
self.logger.warning(
f"Failed to embed individual text: {str(e)}"
)
embeddings.append([])
self.stats["successful_requests"] += 1
return embeddings
except Exception as e:
self.stats["failed_requests"] += 1
self.logger.warning(
f"Embedding generation failed (attempt {attempt+1}/{self.max_retries}): {str(e)}"
)
if attempt < self.max_retries - 1:
# Exponential backoff with jitter
delay = self.retry_delay * (2**attempt) + (time.time() % 1)
self.logger.info(f"Retrying in {delay:.1f} seconds...")
time.sleep(delay)
# All retries failed
self.logger.error("All embedding generation attempts failed")
return [[] for _ in texts]
@error_handler(ErrorType.EMBEDDING_GENERATION)
def generate_query_embedding(self, query: str) -> List[float]:
"""
Generate embedding for a single query string.
Args:
query: Query text to embed
Returns:
Embedding vector as a list of floats
"""
if not self.client or not query:
return []
self.logger.info(f"Generating embedding for query: {query[:50]}...")
# Check cache first
if self.cache is not None:
cache_key = self._get_cache_key(query, "query")
if cache_key in self.cache:
self.stats["cache_hits"] += 1
return self.cache[cache_key]
# Generate embedding
embeddings = self._generate_with_retry([query])
embedding = embeddings[0] if embeddings else []
# Cache the result
if embedding and self.cache is not None:
cache_key = self._get_cache_key(query, "query")
self.cache[cache_key] = embedding
return embedding
def _get_cache_key(self, text: str, prefix: str = "doc") -> str:
"""
Generate cache key for text.
Args:
text: Text content
prefix: Key prefix
Returns:
Cache key string
"""
# 🔐 Create hash of text + model for unique key
content_hash = hashlib.md5(f"{self.model}:{text}".encode()).hexdigest()
return f"{prefix}:{content_hash}"
def get_statistics(self) -> Dict[str, Any]:
"""
Get embedding generation statistics.
Returns:
Dictionary with statistics
"""
runtime = datetime.now() - self.stats["start_time"]
return {
**self.stats,
"runtime_seconds": runtime.total_seconds(),
"cache_hit_rate": (
self.stats["cache_hits"] / max(1, self.stats["total_requests"]) * 100
),
"success_rate": (
self.stats["successful_requests"]
/ max(1, self.stats["total_requests"])
* 100
),
"avg_tokens_per_request": (
self.stats["total_tokens_processed"]
/ max(1, self.stats["total_requests"])
),
"cache_size": len(self.cache) if self.cache else 0,
"model": self.model,
"batch_size": self.batch_size,
}
def clear_cache(self):
"""Clear the embedding cache."""
if self.cache:
self.cache.clear()
self.logger.info("Embedding cache cleared")
def warm_up_cache(self, sample_texts: List[str]):
"""
🔥 Warm up the cache with sample texts.
Args:
sample_texts: List of sample texts to pre-generate embeddings
"""
if not sample_texts:
return
self.logger.info(f"🔥 Warming up cache with {len(sample_texts)} sample texts")
sample_items = [{"content": text, "metadata": {}} for text in sample_texts]
self.generate_embeddings(sample_items)
self.logger.info("Cache warm-up completed")