payman / src /rag /query_processor.py
satyamdev404's picture
Upload 31 files
e0aa230 verified
raw
history blame
14.6 kB
"""
Query Processor Module
This module is responsible for processing user queries and converting
them to vector embeddings for retrieval.
Technologies: Gemini Embedding v3, LangChain, Pinecone
"""
import logging
import time
from typing import Dict, List, Any, Optional
from datetime import datetime, timedelta
class QueryProcessor:
"""
Processes user queries and converts them to vector embeddings.
Features:
- Query preprocessing and normalization
- Query embedding generation
- Context retrieval from vector database
- Query expansion and caching
- Metadata filtering and ranking
"""
def __init__(
self, embedding_generator, vector_db, config: Optional[Dict[str, Any]] = None
):
"""
Initialize the QueryProcessor with dependencies.
Args:
embedding_generator: Instance of EmbeddingGenerator
vector_db: Instance of VectorDB
config: Configuration dictionary with processing parameters
"""
self.embedding_generator = embedding_generator
self.vector_db = vector_db
self.config = config or {}
self.logger = logging.getLogger(__name__)
# Configuration settings
self.top_k = self.config.get("top_k", 5)
self.similarity_threshold = self.config.get("similarity_threshold", 0.7)
self.max_context_length = self.config.get("max_context_length", 4000)
self.enable_caching = self.config.get("enable_caching", True)
self.cache_ttl = self.config.get("cache_ttl", 3600) # 1 hour
# Query cache and history
self.query_cache = {}
self.query_history = []
self.logger.info("QueryProcessor initialized with advanced features")
def process_query(
self, query: str, filter: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Process a user query and retrieve relevant context.
Args:
query: User query string
filter: Optional metadata filter for search
Returns:
Dictionary containing query, retrieved context, and metadata
"""
if not query or not query.strip():
return {
"query": query,
"context": [],
"total_results": 0,
"error": "Empty query provided",
}
self.logger.info(f"Processing query: {query[:100]}...")
start_time = time.time()
try:
# Check cache first
cache_key = self._generate_cache_key(query, filter)
if self.enable_caching and cache_key in self.query_cache:
cached_result = self.query_cache[cache_key]
if self._is_cache_valid(cached_result["timestamp"]):
self.logger.info(" Returning cached result")
cached_result["from_cache"] = True
return cached_result
# Preprocess the query
processed_query = self._preprocess_query(query)
expanded_queries = self._expand_query(processed_query)
# Generate embeddings for all query variations
all_results = []
for q in expanded_queries:
query_embedding = self.embedding_generator.generate_query_embedding(q)
if query_embedding:
# Search for similar vectors
search_results = self.vector_db.search(
query_embedding=query_embedding,
top_k=self.top_k * 2, # Get more results for better filtering
filter=filter,
)
all_results.extend(search_results)
# Deduplicate and rank results
unique_results = self._deduplicate_results(all_results)
ranked_results = self._rank_results(unique_results, query)
# Filter results by similarity threshold
filtered_results = [
result
for result in ranked_results[: self.top_k]
if result.get("score", 0) >= self.similarity_threshold
]
# Extract and format context
context = self._extract_context(filtered_results)
# Prepare result
result = {
"query": query,
"processed_query": processed_query,
"expanded_queries": expanded_queries,
"context": context,
"total_results": len(filtered_results),
"processing_time": time.time() - start_time,
"timestamp": datetime.now(),
"from_cache": False,
}
# Cache the result
if self.enable_caching:
self.query_cache[cache_key] = result.copy()
# Add to query history
self._add_to_history(query, len(filtered_results))
self.logger.info(f"Query processed in {result['processing_time']:.2f}s")
return result
except Exception as e:
self.logger.error(f"❌ Error processing query: {str(e)}")
return {
"query": query,
"context": [],
"total_results": 0,
"error": str(e),
"processing_time": time.time() - start_time,
}
def _preprocess_query(self, query: str) -> str:
"""
Preprocess the query for better embedding generation.
Args:
query: Raw query string
Returns:
Preprocessed query string
"""
# Remove extra whitespace
query = " ".join(query.split())
# Remove special characters that might interfere
import re
query = re.sub(r"[^\w\s\-\?\!]", " ", query)
# Normalize question words
question_words = {
"whats": "what is",
"hows": "how is",
"wheres": "where is",
"whos": "who is",
"whens": "when is",
}
for abbrev, full in question_words.items():
query = query.replace(abbrev, full)
return query.strip()
def _expand_query(self, query: str) -> List[str]:
"""
Expand the query with variations for better retrieval.
Args:
query: Preprocessed query
Returns:
List of query variations
"""
expanded = [query]
# Add question variations
if not any(
q in query.lower() for q in ["what", "how", "why", "when", "where", "who"]
):
expanded.append(f"what is {query}")
expanded.append(f"how does {query} work")
# Add definition variation
if "definition" not in query.lower() and "define" not in query.lower():
expanded.append(f"{query} definition")
# Add example variation
if "example" not in query.lower():
expanded.append(f"{query} examples")
return expanded[:3] # Limit to 3 variations
def _deduplicate_results(
self, results: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Remove duplicate results based on content similarity.
Args:
results: List of search results
Returns:
Deduplicated results
"""
seen_ids = set()
unique_results = []
for result in results:
result_id = result.get("id")
if result_id and result_id not in seen_ids:
seen_ids.add(result_id)
unique_results.append(result)
return unique_results
def _rank_results(
self, results: List[Dict[str, Any]], query: str
) -> List[Dict[str, Any]]:
"""
Rank results based on multiple factors.
Args:
results: List of search results
query: Original query
Returns:
Ranked results
"""
query_words = set(query.lower().split())
for result in results:
# Base score from similarity
base_score = result.get("score", 0.0)
# Boost score based on text relevance
text = result.get("metadata", {}).get("text", "").lower()
text_words = set(text.split())
word_overlap = len(query_words.intersection(text_words))
relevance_boost = word_overlap / max(len(query_words), 1) * 0.1
# Boost score based on source type
source = result.get("metadata", {}).get("source", "")
source_boost = 0.0
if source.endswith(".pdf"):
source_boost = 0.05 # PDFs often contain structured info
elif "http" in source:
source_boost = 0.02 # Web content
# Calculate final score
final_score = base_score + relevance_boost + source_boost
result["final_score"] = min(final_score, 1.0)
# Sort by final score
return sorted(results, key=lambda x: x.get("final_score", 0), reverse=True)
def _extract_context(
self, search_results: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Extract and format context from search results.
Args:
search_results: List of search results from vector database
Returns:
List of formatted context items
"""
context = []
total_length = 0
for result in search_results:
# Extract text content from metadata
text = result.get("metadata", {}).get("text", "")
# Check if adding this context would exceed the limit
if total_length + len(text) > self.max_context_length and context:
break
# Format context item with enhanced metadata
context_item = {
"text": text,
"score": result.get("score", 0),
"final_score": result.get("final_score", result.get("score", 0)),
"source": result.get("metadata", {}).get("source", "unknown"),
"chunk_id": result.get("id", ""),
"metadata": result.get("metadata", {}),
"relevance_rank": len(context) + 1,
}
context.append(context_item)
total_length += len(text)
self.logger.info(
f"Extracted {len(context)} context items (total length: {total_length})"
)
return context
def _generate_cache_key(self, query: str, filter: Optional[Dict[str, Any]]) -> str:
"""Generate a cache key for the query."""
import hashlib
filter_str = str(sorted(filter.items())) if filter else ""
cache_string = f"{query.lower().strip()}{filter_str}"
return hashlib.md5(cache_string.encode()).hexdigest()
def _is_cache_valid(self, timestamp: datetime) -> bool:
"""Check if cached result is still valid."""
return datetime.now() - timestamp < timedelta(seconds=self.cache_ttl)
def _add_to_history(self, query: str, result_count: int):
"""Add query to history for analytics."""
self.query_history.append(
{
"query": query,
"timestamp": datetime.now(),
"result_count": result_count,
}
)
# Keep only last 100 queries
if len(self.query_history) > 100:
self.query_history = self.query_history[-100:]
def get_query_suggestions(self, partial_query: str) -> List[str]:
"""
Generate query suggestions based on partial input and history.
Args:
partial_query: Partial query string
Returns:
List of suggested queries
"""
suggestions = []
# Add suggestions from query history
for hist_item in reversed(self.query_history[-20:]): # Last 20 queries
hist_query = hist_item["query"]
if (
partial_query.lower() in hist_query.lower()
and hist_query not in suggestions
):
suggestions.append(hist_query)
# Add template-based suggestions
if len(suggestions) < 3:
templates = [
f"What is {partial_query}?",
f"How does {partial_query} work?",
f"Examples of {partial_query}",
f"{partial_query} definition",
f"{partial_query} best practices",
]
for template in templates:
if template not in suggestions:
suggestions.append(template)
if len(suggestions) >= 5:
break
return suggestions[:5]
def get_query_analytics(self) -> Dict[str, Any]:
"""
Get analytics about query patterns.
Returns:
Dictionary with query analytics
"""
if not self.query_history:
return {"total_queries": 0, "cache_hit_rate": 0.0}
total_queries = len(self.query_history)
recent_queries = [q["query"] for q in self.query_history[-10:]]
# Calculate average results per query
avg_results = sum(q["result_count"] for q in self.query_history) / total_queries
# Most common query patterns
query_words = []
for q in self.query_history:
query_words.extend(q["query"].lower().split())
from collections import Counter
common_words = Counter(query_words).most_common(5)
return {
"total_queries": total_queries,
"average_results_per_query": round(avg_results, 2),
"recent_queries": recent_queries,
"common_query_words": common_words,
"cache_size": len(self.query_cache),
}
def clear_cache(self):
"""Clear the query cache."""
self.query_cache.clear()
self.logger.info("Query cache cleared")
def clear_history(self):
"""Clear the query history."""
self.query_history.clear()
self.logger.info("Query history cleared")