File size: 11,634 Bytes
3286f63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import re
from collections import Counter, defaultdict
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
import networkx as nx
import plotly.express as px

def create_recommendation_system(pairs):
    sets_by_length = defaultdict(list)

    for pair in pairs:
        sets_by_length[len(pair)].append(set(pair))

    sorted_keys = sorted(sets_by_length.keys(), reverse=True)

    def recommend(restaurant):
        recommended = set()
        for length in sorted_keys:
            for rest_set in sets_by_length[length]:
                if restaurant in rest_set:
                    recommended.update(rest_set - {restaurant})
        return list(recommended)

    return recommend

def recommend(input_string):
    f = open("task1_output_n_c1_sup4.txt", "r")
    data = f.read()
    data = data.split("Frequent Itemsets:")

    clean_string = re.sub(r'\n', '', data[1])
    pattern = r"\([^\)]+\)"

    extracted_tuples = re.findall(pattern, clean_string.replace("'", ""))

    tuple_list = [tuple(s.strip('()').split(', ')) for s in extracted_tuples]

    recommendation_system = create_recommendation_system(tuple_list)

    output_list = recommendation_system(input_string)

    images_labels = [("https://logowik.com/content/uploads/images/aw-restaurants5299.jpg", "A&W Restaurant"),
    ("https://inspirebrands.com/wp-content/uploads/2017/10/Arbys.jpg","Arbys"),
    ("https://www.shutterstock.com/image-vector/vinnytsia-ukraine-october-8-2023-600nw-2372329457.jpg","Burger King"),
    ("https://static.wixstatic.com/media/cc8696_2f0a91e1d9d245efa98b100adfcdd887~mv2.png/v1/crop/x_0,y_0,w_242,h_71/fill/w_339,h_94,al_c,lg_1,q_85,enc_auto/logo.png","California Kitchen"),
    ("https://logos-world.net/wp-content/uploads/2022/11/Carls-Jr.-Logo-500x281.png","Carls Jr."),
    ("https://upload.wikimedia.org/wikipedia/commons/thumb/0/02/Chick-fil-A_Logo.svg/873px-Chick-fil-A_Logo.svg.png","Chick-Fil-A"),
    ("https://upload.wikimedia.org/wikipedia/en/thumb/3/38/CECLogo2019.svg/330px-CECLogo2019.svg.png","Chuck E. Cheese"),
    ("https://upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Culver%27s_logo.svg/558px-Culver%27s_logo.svg.png","Culvers"),
    ("https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Dairy_Queen_logo.svg/300px-Dairy_Queen_logo.svg.png", "Dairy Queen"),
    ("https://logowik.com/content/uploads/images/493_dominospizza.jpg", "Dominos Pizza"),
    ("https://logos-world.net/wp-content/uploads/2023/03/Five-Guys-Logo-500x281.png", "Five Guys"),
    ("https://entrackr.com/storage/2023/06/Good-Flippin.jpg", "Good Flippin Burger"),
    ("https://logowik.com/content/uploads/images/hardees4024.jpg", "Hardees"),
    ("https://logos-marques.com/wp-content/uploads/2023/04/In-N-Out-Burger-Logo-768x432.png", "In-N-Out"),
    ("https://logos-world.net/wp-content/uploads/2022/08/Jack-in-the-Box-Logo-500x281.png", "Jack in the Box"),
    ("https://1000logos.net/wp-content/uploads/2021/05/Jollibee-logo-768x432.png", "Jollibee"),
    ("https://logowik.com/content/uploads/images/674_kfc.jpg", "KFC"),
    ("https://visitguernseycounty.com/wp-content/uploads/2022/05/Little-Caesars-Logo-1024x576.jpg", "Little Caesars"),
    ("https://logowik.com/content/uploads/images/mcdonalds-icon.jpg", "McDonalds"),
    ("https://images.squarespace-cdn.com/content/v1/53a47e51e4b0e78ae9ed2e97/4b8df8ab-662a-4381-92a6-97839099d5a7/Papa-Johns-logo.jpg", "Papa Johns"),
    ("https://cdn.nwe.io/files/x/d5/cc/c9810c9ad13188a3e0b2bc6577d7.jpg", "Pizza Inn"),
    ("https://logowik.com/content/uploads/images/294_pizza_hut_new_logo.jpg", "Pizza hut"),
    ("https://upload.wikimedia.org/wikipedia/commons/a/a6/PizzaExpress_Logo.jpg", "PizzaExpress"),
    ("https://images.squarespace-cdn.com/content/v1/53a47e51e4b0e78ae9ed2e97/be0aea01-84cc-4b89-a5e8-314ed394dc3c/Popeyes+logo.jpg", "Popeyes"),
    ("https://upload.wikimedia.org/wikipedia/commons/d/d9/Original_Round_Table_Pizza_Logo.jpg", "Round Table Pizza"),
    ("https://logowik.com/content/uploads/images/328_sbarro.jpg", "Sbarro"),
    ("https://1000logos.net/wp-content/uploads/2023/04/Shake-Shack-Logo-768x432.png", "Shake Shack"),
    ("https://upload.wikimedia.org/wikipedia/en/thumb/6/6d/Shakey%27s_US_logo.svg/330px-Shakey%27s_US_logo.svg.png", "Shakeys Pizza"),
    ("https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/SONIC_New_Logo_2020.svg/1199px-SONIC_New_Logo_2020.svg.png", "Sonic"),
    ("https://images.getbento.com/accounts/236fb3743b9522eafb90c6d2d20b8115/media/accounts/media/V1G5LTCrSDqyixbNUDpr_logo-tasty-burger.png", "Tasty burger"),
    ("https://cdn.worldvectorlogo.com/logos/uno-pizzeria.svg", "Uno Pizzeria"),
    ("https://upload.wikimedia.org/wikipedia/commons/thumb/2/28/Wahlburgers_Logo.svg/768px-Wahlburgers_Logo.svg.png", "Wahlburgers"),
    ("https://logowik.com/content/uploads/images/866_wendys.jpg", "Wendys"),
    ("https://logowik.com/content/uploads/images/whataburger8433.jpg", "Whataburger"),
    ("https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcTsUZPMFzUmACfaeSrMSZsgGn5gnbXNyYRPxIrS1PfCrFWI9QJhrlkmdG9IhFbi", "White Castle")]

    output = []
    for i in images_labels:
        if(i[1] in output_list):
          output.append(i)

    return output


def plot_heatmap():
  f = open("task1_output_n_c1_sup4.txt", "r")
  data = f.read()
  data = data.split("Frequent Itemsets:")

  clean_string = re.sub(r'\n', '', data[1])
  pattern = r"\([^\)]+\)"

  extracted_tuples = re.findall(pattern, clean_string.replace("'", ""))

  frequent_itemsets = [tuple(s.strip('()').split(', ')) for s in extracted_tuples]
  

  # Initialize a defaultdict for item pair frequencies
  pair_counts = defaultdict(int)

  # Count frequencies of item pairs, excluding self-pairings
  for itemset in frequent_itemsets:
      unique_items = list(set(itemset))
      for i in range(len(unique_items)):
          for j in range(i + 1, len(unique_items)):
              pair = tuple(sorted([unique_items[i], unique_items[j]]))
              pair_counts[pair] += 1

  # Get a sorted list of unique items
  all_items = sorted(set(item for pair in pair_counts for item in pair))

  # Create a DataFrame for the heatmap
  heatmap_data = pd.DataFrame(0, index=all_items, columns=all_items)
  for (item1, item2), count in pair_counts.items():
      heatmap_data.at[item1, item2] = count
      heatmap_data.at[item2, item1] = count  # Ensure symmetry

  # Create the heatmap
  fig = px.imshow(heatmap_data, labels=dict(x="Item", y="Item", color="Frequency"),
                  x=all_items, y=all_items,
                  color_continuous_scale=px.colors.sequential.Blues)

  fig.update_layout(title='Heatmap of Item Co-occurrences (Excluding Self-Pairings)',
                    title_x=0.5)

  return fig

def plot_bar():
  f = open("task1_output_n_c1_sup4.txt", "r")
  data = f.read()
  data = data.split("Frequent Itemsets:")

  clean_string = re.sub(r'\n', '', data[1])
  pattern = r"\([^\)]+\)"

  extracted_tuples = re.findall(pattern, clean_string.replace("'", ""))

  frequent_itemsets = [tuple(s.strip('()').split(', ')) for s in extracted_tuples]

  # Flatten the list of itemsets and count occurrences of each item
  items = [item for itemset in frequent_itemsets for item in itemset]
  item_counts = Counter(items)

  # Convert the counter to a DataFrame
  df = pd.DataFrame(item_counts.items(), columns=['Item', 'Count'])

  # Sort the DataFrame in descending order by 'Count'
  df = df.sort_values(by='Count', ascending=False)

  # Create the bar chart
  fig = px.bar(df, x='Item', y='Count', title='Frequency of Items in Frequent Itemsets',
              labels={'Count': 'Frequency'}, color='Count', height=600)

  fig.update_layout(xaxis_title='Item', yaxis_title='Frequency', title_x=0.5)

  return fig

def plot_association():
  f = open("task1_output_n_c1_sup4.txt", "r")
  data = f.read()
  data = data.split("Frequent Itemsets:")

  clean_string = re.sub(r'\n', '', data[1])
  pattern = r"\([^\)]+\)"

  extracted_tuples = re.findall(pattern, clean_string.replace("'", ""))

  frequent_itemsets = [tuple(s.strip('()').split(', ')) for s in extracted_tuples]

  G = nx.DiGraph()

  for itemset in frequent_itemsets:
      if len(itemset) == 2:
          G.add_edge(itemset[0], itemset[1])
      else:
          for i in range(len(itemset)):
              for j in range(i + 1, len(itemset)):
                  G.add_edge(itemset[i], itemset[j])

  pos = nx.spring_layout(G)

  edge_x = []
  edge_y = []
  for edge in G.edges():
      x0, y0 = pos[edge[0]]
      x1, y1 = pos[edge[1]]
      edge_x.append(x0)
      edge_x.append(x1)
      edge_x.append(None)
      edge_y.append(y0)
      edge_y.append(y1)
      edge_y.append(None)

  edge_trace = go.Scatter(
      x=edge_x, y=edge_y,
      line=dict(width=0.5, color='#888'),
      hoverinfo='none',
      mode='lines')

  node_x = []
  node_y = []
  for node in G.nodes():
      x, y = pos[node]
      node_x.append(x)
      node_y.append(y)

  node_trace = go.Scatter(
      x=node_x, y=node_y,
      mode='markers+text',
      text=[node for node in G.nodes()],
      textposition="top center",
      hoverinfo='text',
      marker=dict(
          showscale=True,
          colorscale='YlGnBu',
          size=10,
          colorbar=dict(
              thickness=15,
              title='Node Connections',
              xanchor='left',
              titleside='right'
          ),
          line_width=2))

  fig = go.Figure(data=[edge_trace, node_trace],
              layout=go.Layout(
                  title='<br>Association Rule Graph',
                  titlefont_size=16,
                  showlegend=False,
                  hovermode='closest',
                  margin=dict(b=20,l=5,r=5,t=40),
                  annotations=[ dict(
                      text="Association Rule Network",
                      showarrow=False,
                      xref="paper", yref="paper",
                      x=0.005, y=-0.002 ) ],
                  xaxis=dict(showgrid=False, zeroline=False),
                  yaxis=dict(showgrid=False, zeroline=False))
                  )
  return fig

sorted_unique_restaurants = [
 'A&W Restaurant',
 'Arbys',
 'Burger King',
 'California Kitchen',
 'Carls Jr.',
 'Chick-Fil-A',
 'Chuck E. Cheese',
 'Culvers',
 'Dairy Queen',
 'Dominos Pizza',
 'Five Guys',
 'Good Flippin Burger',
 'Hardees',
 'In-N-Out',
 'Jack in the Box',
 'Jollibee',
 'KFC',
 'Little Caesars',
 'McDonalds',
 'Papa Johns',
 'Pizza Inn',
 'Pizza hut',
 'PizzaExpress',
 'Popeyes',
 'Round Table Pizza',
 'Sbarro',
 'Shake Shack',
 'Shakeys Pizza',
 'Sonic',
 'Tasty burger',
 'Uno Pizzeria',
 'Wahlburgers',
 'Wendys',
 'Whataburger',
 'White Castle']

recommender = gr.Interface(fn=recommend, inputs=gr.Dropdown(choices=sorted_unique_restaurants, value="Burger King"), outputs=gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", columns=[4], object_fit="contain", height="auto"), title='Restaurant Recommender System', description='Find your ideal restaurant')  
vizz_heatmap = gr.Interface(fn=plot_heatmap, inputs = None, outputs=gr.Plot(label="Heatmap"), description = "Restaurant Itemset Frequency")
vizz_bar = gr.Interface(fn=plot_bar, inputs = None, outputs=gr.Plot(label="Bar Graph"), description = "Restaurant Frequency")
vizz_graph = gr.Interface(fn=plot_association, inputs = None, outputs=gr.Plot(label="Association Graph"), description = "Association Graph of Restaurants")


tabbed = gr.TabbedInterface([recommender, vizz_heatmap, vizz_bar, vizz_graph], ["Restaurant Recommender", "Heatmap", "Restaurant Frequency", "Association Graph"])

tabbed.queue().launch(share = True, debug = True)