Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| """ | |
| Some preprocessing utilities have been taken from: | |
| https://github.com/google-research/maxim/blob/main/maxim/run_eval.py | |
| """ | |
| import gradio as gr | |
| import numpy as np | |
| import tensorflow as tf | |
| from huggingface_hub.keras_mixin import from_pretrained_keras | |
| from PIL import Image | |
| from create_maxim_model import Model | |
| from maxim.configs import MAXIM_CONFIGS | |
| _MODEL = from_pretrained_keras("sayakpaul/S-2_enhancement_lol") | |
| def mod_padding_symmetric(image, factor=64): | |
| """Padding the image to be divided by factor.""" | |
| height, width = image.shape[0], image.shape[1] | |
| height_pad, width_pad = ((height + factor) // factor) * factor, ( | |
| (width + factor) // factor | |
| ) * factor | |
| padh = height_pad - height if height % factor != 0 else 0 | |
| padw = width_pad - width if width % factor != 0 else 0 | |
| image = tf.pad( | |
| image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT" | |
| ) | |
| return image | |
| def make_shape_even(image): | |
| """Pad the image to have even shapes.""" | |
| height, width = image.shape[0], image.shape[1] | |
| padh = 1 if height % 2 != 0 else 0 | |
| padw = 1 if width % 2 != 0 else 0 | |
| image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT") | |
| return image | |
| def process_image(image: Image): | |
| input_img = np.asarray(image) / 255.0 | |
| height, width = input_img.shape[0], input_img.shape[1] | |
| # Padding images to have even shapes | |
| input_img = make_shape_even(input_img) | |
| height_even, width_even = input_img.shape[0], input_img.shape[1] | |
| # padding images to be multiplies of 64 | |
| input_img = mod_padding_symmetric(input_img, factor=64) | |
| input_img = tf.expand_dims(input_img, axis=0) | |
| return input_img, height, width, height_even, width_even | |
| def init_new_model(input_img): | |
| configs = MAXIM_CONFIGS.get("S-2") | |
| configs.update( | |
| { | |
| "variant": "S-2", | |
| "dropout_rate": 0.0, | |
| "num_outputs": 3, | |
| "use_bias": True, | |
| "num_supervision_scales": 3, | |
| } | |
| ) | |
| configs.update({"input_resolution": (input_img.shape[1], input_img.shape[2])}) | |
| new_model = Model(**configs) | |
| new_model.set_weights(_MODEL.get_weights()) | |
| return new_model | |
| def infer(image): | |
| preprocessed_image, height, width, height_even, width_even = process_image(image) | |
| new_model = init_new_model(preprocessed_image) | |
| preds = new_model.predict(preprocessed_image) | |
| if isinstance(preds, list): | |
| preds = preds[-1] | |
| if isinstance(preds, list): | |
| preds = preds[-1] | |
| preds = np.array(preds[0], np.float32) | |
| new_height, new_width = preds.shape[0], preds.shape[1] | |
| h_start = new_height // 2 - height_even // 2 | |
| h_end = h_start + height | |
| w_start = new_width // 2 - width_even // 2 | |
| w_end = w_start + width | |
| preds = preds[h_start:h_end, w_start:w_end, :] | |
| return Image.fromarray(np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(np.uint8))) | |
| title = "Enhance low-light images." | |
| article = "The underlying model is [this](https://huggingface.co/sayakpaul/S-2_enhancement_lol). You can use the model to enhance low-light images, " | |
| "which may be useful for aiding vision-impaired people. To quickly try out the model, you can choose from the available sample images above, or you " | |
| "can submit your own image. Not that, internally, the model is re-initialized based on the spatial dimensions of the input image and this process is time-consuming." | |
| iface = gr.Interface( | |
| infer, | |
| inputs="image", | |
| outputs="image", | |
| title=title, | |
| article=article, | |
| allow_flagging="never", | |
| examples=[["1.png"], ["111.png"], ["748.png"], ["a4541-DSC_0040-2.png"]], | |
| ) | |
| iface.launch(debug=True) | |
