Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,30 @@
|
|
|
|
1 |
import subprocess
|
2 |
import threading
|
|
|
3 |
|
4 |
# Fonction pour lancer train.py en arrière-plan
|
5 |
def train_model():
|
6 |
process = subprocess.Popen(["python", "trainer.py"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
7 |
stdout, stderr = process.communicate()
|
8 |
-
|
9 |
-
print(stderr.decode()) # Afficher les erreurs s'il y en a
|
10 |
|
11 |
-
#
|
12 |
threading.Thread(target=train_model, daemon=True).start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import subprocess
|
3 |
import threading
|
4 |
+
import time
|
5 |
|
6 |
# Fonction pour lancer train.py en arrière-plan
|
7 |
def train_model():
|
8 |
process = subprocess.Popen(["python", "trainer.py"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
9 |
stdout, stderr = process.communicate()
|
10 |
+
return stdout.decode() + "\n" + stderr.decode() # Retourne les logs
|
|
|
11 |
|
12 |
+
# Démarrer l'entraînement en arrière-plan
|
13 |
threading.Thread(target=train_model, daemon=True).start()
|
14 |
+
|
15 |
+
# ✅ Assurer que Gradio démarre bien après un court délai
|
16 |
+
time.sleep(3)
|
17 |
+
|
18 |
+
# Interface Gradio
|
19 |
+
demo = gr.ChatInterface(
|
20 |
+
respond,
|
21 |
+
additional_inputs=[
|
22 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
23 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
24 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
25 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
26 |
+
],
|
27 |
+
)
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
demo.launch()
|