File size: 2,257 Bytes
3096cd1
 
a07ee33
271596a
 
 
a07ee33
 
3096cd1
9389450
 
 
3096cd1
 
 
2a2e637
a07ee33
 
 
3096cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24c5da9
 
 
 
 
 
 
 
 
3096cd1
24c5da9
 
271596a
24c5da9
 
 
 
 
 
3096cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466a15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
from huggingface_hub import InferenceClient
import os
from dotenv import load_dotenv

load_dotenv()

token = os.environ.get("HF_TOKEN")

if not token:
    raise gr.Error("HF_TOKEN is not set.")

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient(
    model="https://mw6ztcar07ths6bp.us-east-1.aws.endpoints.huggingface.cloud",
    token=token
)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    try:
        for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = message.choices[0].delta.content

            if token:
                response += token

            yield response
    except ValueError as e:
        print("ERROR:", e)
        raise gr.Error("We have some trouble connecting to the model. Please try again later.")
    except Exception as e:
        raise gr.Error("An unknown error occurred. Please try again later.")

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()