Spaces:
Sleeping
Sleeping
File size: 29,618 Bytes
e2492f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
from flask import Flask, render_template, request, jsonify, send_from_directory, url_for
from flask_cors import CORS
import cv2
import torch
import numpy as np
import os
from werkzeug.utils import secure_filename
import sys
import traceback
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import time
# Add bodybuilding_pose_analyzer to path
sys.path.append('.') # Assuming app.py is at the root of cv.github.io
from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer
from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer
# Add YOLOv7 to path
sys.path.append('yolov7')
from yolov7.models.experimental import attempt_load
from yolov7.utils.general import check_img_size, non_max_suppression_kpt, scale_coords
from yolov7.utils.torch_utils import select_device
from yolov7.utils.plots import plot_skeleton_kpts
def wrap_text(text: str, font_face: int, font_scale: float, thickness: int, max_width: int) -> list[str]:
"""Wrap text to fit within max_width."""
if not text:
return []
lines = []
words = text.split(' ')
current_line = ''
for word in words:
# Check width if current_line + word fits
test_line = current_line + word + ' '
(text_width, _), _ = cv2.getTextSize(test_line.strip(), font_face, font_scale, thickness)
if text_width <= max_width:
current_line = test_line
else:
# Word doesn't fit, so current_line (without the new word) is a complete line
lines.append(current_line.strip())
# Start new line with the current word
current_line = word + ' '
# If a single word is too long, it will still overflow. Handle by breaking word if necessary (future enhancement)
(single_word_width, _), _ = cv2.getTextSize(word.strip(), font_face, font_scale, thickness)
if single_word_width > max_width:
# For now, just add the long word and let it overflow, or truncate it.
# A more complex solution would break the word.
lines.append(word.strip()) # Add the long word as its own line
current_line = '' # Reset current_line as the long word is handled
if current_line.strip(): # Add the last line
lines.append(current_line.strip())
return lines if lines else [text] # Ensure at least the original text is returned if no wrapping happens
app = Flask(__name__, static_url_path='/static', static_folder='static')
CORS(app, resources={r"/*": {"origins": "*"}})
app.config['UPLOAD_FOLDER'] = 'static/uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
# Ensure upload directory exists
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Initialize YOLOv7 model
device = select_device('')
yolo_model = None # Initialize as None
stride = None
imgsz = None
try:
yolo_model = attempt_load('yolov7-w6-pose.pt', map_location=device)
stride = int(yolo_model.stride.max())
imgsz = check_img_size(640, s=stride)
print("YOLOv7 Model loaded successfully")
except Exception as e:
print(f"Error loading YOLOv7 model: {e}")
traceback.print_exc()
# Not raising here to allow app to run if only MoveNet is used. Error will be caught if YOLOv7 is selected.
# YOLOv7 pose model expects 17 keypoints
kpt_shape = (17, 3)
# Load CNN model for bodybuilding pose classification
cnn_model_path = 'external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5'
cnn_model = load_model(cnn_model_path)
cnn_class_labels = ['side_chest', 'front_double_biceps', 'back_double_biceps', 'front_lat_spread', 'back_lat_spread']
def predict_pose_cnn(img_path):
img = image.load_img(img_path, target_size=(150, 150))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) / 255.0
predictions = cnn_model.predict(img_array)
predicted_class = np.argmax(predictions, axis=1)
confidence = float(np.max(predictions))
return cnn_class_labels[predicted_class[0]], confidence
@app.route('/static/uploads/<path:filename>')
def serve_video(filename):
response = send_from_directory(app.config['UPLOAD_FOLDER'], filename, as_attachment=False)
# Ensure correct content type, especially for Safari/iOS if issues arise
if filename.lower().endswith('.mp4'):
response.headers['Content-Type'] = 'video/mp4'
return response
@app.after_request
def after_request(response):
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization,X-Requested-With,Accept')
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
return response
def process_video_yolov7(video_path): # Renamed from process_video
global yolo_model, imgsz, stride # Ensure global model is used
if yolo_model is None:
raise RuntimeError("YOLOv7 model failed to load. Cannot process video.")
try:
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Processing video: {width}x{height} @ {fps}fps")
# Create output video writer
output_path = os.path.join(app.config['UPLOAD_FOLDER'], 'output.mp4')
fourcc = cv2.VideoWriter_fourcc(*'avc1')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
print(f"Processing frame {frame_count}")
# Prepare image
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (imgsz, imgsz))
img = img.transpose((2, 0, 1)) # HWC to CHW
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float() / 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
with torch.no_grad():
pred = yolo_model(img)[0] # Use yolo_model
pred = non_max_suppression_kpt(pred, conf_thres=0.25, iou_thres=0.45, nc=yolo_model.yaml['nc'], kpt_label=True)
# Draw results
output_frame = frame.copy()
poses_detected = False
for det in pred:
if len(det):
poses_detected = True
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], frame.shape).round()
for row in det:
xyxy = row[:4]
conf = row[4]
cls = row[5]
kpts = row[6:]
kpts = torch.tensor(kpts).view(kpt_shape)
output_frame = plot_skeleton_kpts(output_frame, kpts, steps=3, orig_shape=output_frame.shape[:2])
if not poses_detected:
print(f"No poses detected in frame {frame_count}")
out.write(output_frame)
cap.release()
out.release()
if frame_count == 0:
raise ValueError("No frames were processed from the video")
print(f"Video processing completed. Processed {frame_count} frames")
# Return URL for the client, using the 'serve_video' endpoint
output_filename = 'output.mp4'
return url_for('serve_video', filename=output_filename, _external=False)
except Exception as e:
print('Error in process_video:', e)
traceback.print_exc()
raise
def process_video_movenet(video_path, model_variant='lightning', pose_type='front_double_biceps'):
try:
print(f"[PROCESS_VIDEO_MOVENET] Called with video_path: {video_path}, model_variant: {model_variant}, pose_type: {pose_type}")
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
analyzer = MoveNetAnalyzer(model_name=model_variant)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Add panel width to total width
panel_width = 300
total_width = width + panel_width
print(f"Processing video with MoveNet ({model_variant}): {width}x{height} @ {fps}fps")
print(f"Output dimensions will be: {total_width}x{height}")
output_filename = f'output_movenet_{model_variant}.mp4'
output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename)
print(f"Output path: {output_path}")
fourcc = cv2.VideoWriter_fourcc(*'avc1')
out = cv2.VideoWriter(output_path, fourcc, fps, (total_width, height))
if not out.isOpened():
raise ValueError(f"Failed to create output video writer at {output_path}")
frame_count = 0
current_pose = pose_type
segment_length = 4 * fps if fps > 0 else 120
cnn_pose = None
last_valid_landmarks = None
landmarks_analysis = {'error': 'Processing not started'} # Initialize landmarks_analysis
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % 30 == 0:
print(f"Processing frame {frame_count}")
# Process frame
processed_frame, current_landmarks_analysis, landmarks = analyzer.process_frame(frame, current_pose, last_valid_landmarks=last_valid_landmarks)
landmarks_analysis = current_landmarks_analysis # Update with the latest analysis
if frame_count % 30 == 0: # Log every 30 frames
print(f"[MOVENET_DEBUG] Frame {frame_count} - landmarks_analysis: {landmarks_analysis}")
if landmarks:
last_valid_landmarks = landmarks
# CNN prediction (every 4 seconds)
if (frame_count - 1) % segment_length == 0:
temp_img_path = f'temp_frame_for_cnn_{frame_count}.jpg' # Unique temp name
cv2.imwrite(temp_img_path, frame)
try:
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
print(f"[CNN] Frame {frame_count}: Pose: {cnn_pose_pred}, Conf: {cnn_conf:.2f}")
if cnn_conf >= 0.3:
current_pose = cnn_pose_pred # Update current_pose for the analyzer
except Exception as e:
print(f"[CNN] Error predicting pose on frame {frame_count}: {e}")
finally:
if os.path.exists(temp_img_path):
os.remove(temp_img_path)
# Create side panel
panel = np.zeros((height, panel_width, 3), dtype=np.uint8)
# --- Dynamic Text Parameter Calculations ---
current_font = cv2.FONT_HERSHEY_DUPLEX
# Base font scale and reference video height for scaling
# Adjust base_font_scale_at_ref_height if text is generally too large or too small
base_font_scale_at_ref_height = 0.6
reference_height_for_font_scale = 640.0 # e.g., a common video height like 480p, 720p
# Calculate dynamic font_scale
font_scale = (height / reference_height_for_font_scale) * base_font_scale_at_ref_height
# Clamp font_scale to a min/max range to avoid extremes
font_scale = max(0.4, min(font_scale, 1.2))
# Calculate dynamic thickness
thickness = 1 if font_scale < 0.7 else 2
# Calculate dynamic line_height based on actual text height
# Using a sample string like "Ag" which has ascenders and descenders
(_, text_actual_height), _ = cv2.getTextSize("Ag", current_font, font_scale, thickness)
line_spacing_factor = 1.8 # Adjust for more or less space between lines
line_height = int(text_actual_height * line_spacing_factor)
line_height = max(line_height, 15) # Ensure a minimum line height
# Initial y_offset for the first line of text
y_offset_panel = max(line_height, 20) # Start considering top margin and text height
# --- End of Dynamic Text Parameter Calculations ---
display_model_name = f"Gladiator {model_variant.capitalize()}"
cv2.putText(panel, f"Model: {display_model_name}", (10, y_offset_panel), current_font, font_scale, (0, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
if 'error' not in landmarks_analysis:
cv2.putText(panel, "Angles:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
for joint, angle in landmarks_analysis.get('angles', {}).items():
text_to_display = f"{joint.capitalize()}: {angle:.1f} deg"
cv2.putText(panel, text_to_display, (20, y_offset_panel), current_font, font_scale, (0, 255, 0), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
# Define available width for text within the panel, considering padding
text_area_x_start = 20
panel_padding = 10 # Padding from the right edge of the panel
text_area_width = panel_width - text_area_x_start - panel_padding
if landmarks_analysis.get('corrections'):
y_offset_panel += int(line_height * 0.5) # Smaller gap before section title
cv2.putText(panel, "Corrections:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
for correction_text in landmarks_analysis.get('corrections', []):
wrapped_lines = wrap_text(correction_text, current_font, font_scale, thickness, text_area_width)
for line in wrapped_lines:
cv2.putText(panel, line, (text_area_x_start, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
# Display notes if any
if landmarks_analysis.get('notes'):
y_offset_panel += int(line_height * 0.5) # Smaller gap before section title
cv2.putText(panel, "Notes:", (10, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
for note_text in landmarks_analysis.get('notes', []):
wrapped_lines = wrap_text(note_text, current_font, font_scale, thickness, text_area_width)
for line in wrapped_lines:
cv2.putText(panel, line, (text_area_x_start, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
else:
cv2.putText(panel, "Error:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
# Also wrap error message if it can be long
error_text = landmarks_analysis.get('error', 'Unknown error')
text_area_x_start = 20 # Assuming error message also starts at x=20
panel_padding = 10
text_area_width = panel_width - text_area_x_start - panel_padding
wrapped_error_lines = wrap_text(error_text, current_font, font_scale, thickness, text_area_width)
for line in wrapped_error_lines:
cv2.putText(panel, line, (text_area_x_start, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
combined_frame = np.hstack((processed_frame, panel))
out.write(combined_frame)
cap.release()
out.release()
if frame_count == 0:
raise ValueError("No frames were processed from the video by MoveNet")
print(f"MoveNet video processing completed. Processed {frame_count} frames. Output: {output_path}")
print(f"Output file size: {os.path.getsize(output_path)} bytes")
return url_for('serve_video', filename=output_filename, _external=False)
except Exception as e:
print(f'Error in process_video_movenet: {e}')
traceback.print_exc()
raise
def process_video_mediapipe(video_path):
try:
print(f"[PROCESS_VIDEO_MEDIAPIPE] Called with video_path: {video_path}")
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
analyzer = PoseAnalyzer()
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Add panel width to total width
panel_width = 300
total_width = width + panel_width
print(f"Processing video with MediaPipe: {width}x{height} @ {fps}fps")
output_filename = f'output_mediapipe.mp4'
output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename)
fourcc = cv2.VideoWriter_fourcc(*'avc1')
out = cv2.VideoWriter(output_path, fourcc, fps, (total_width, height))
if not out.isOpened():
raise ValueError(f"Failed to create output video writer at {output_path}")
frame_count = 0
current_pose = 'Uncertain' # Initial pose for MediaPipe
segment_length = 4 * fps if fps > 0 else 120
cnn_pose = None
last_valid_landmarks = None
analysis_results = {'error': 'Processing not started'} # Initialize analysis_results
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % 30 == 0:
print(f"Processing frame {frame_count}")
# Process frame with MediaPipe
processed_frame, current_analysis_results, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks)
analysis_results = current_analysis_results # Update with the latest analysis
if landmarks:
last_valid_landmarks = landmarks
# CNN prediction (every 4 seconds)
if (frame_count - 1) % segment_length == 0:
temp_img_path = f'temp_frame_for_cnn_{frame_count}.jpg' # Unique temp name
cv2.imwrite(temp_img_path, frame)
try:
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
print(f"[CNN] Frame {frame_count}: Pose: {cnn_pose_pred}, Conf: {cnn_conf:.2f}")
if cnn_conf >= 0.3:
current_pose = cnn_pose_pred # Update current_pose to be displayed
except Exception as e:
print(f"[CNN] Error predicting pose on frame {frame_count}: {e}")
finally:
if os.path.exists(temp_img_path):
os.remove(temp_img_path)
# Create side panel
panel = np.zeros((height, panel_width, 3), dtype=np.uint8)
# --- Dynamic Text Parameter Calculations ---
current_font = cv2.FONT_HERSHEY_DUPLEX
# Base font scale and reference video height for scaling
# Adjust base_font_scale_at_ref_height if text is generally too large or too small
base_font_scale_at_ref_height = 0.6
reference_height_for_font_scale = 640.0 # e.g., a common video height like 480p, 720p
# Calculate dynamic font_scale
font_scale = (height / reference_height_for_font_scale) * base_font_scale_at_ref_height
# Clamp font_scale to a min/max range to avoid extremes
font_scale = max(0.4, min(font_scale, 1.2))
# Calculate dynamic thickness
thickness = 1 if font_scale < 0.7 else 2
# Calculate dynamic line_height based on actual text height
# Using a sample string like "Ag" which has ascenders and descenders
(_, text_actual_height), _ = cv2.getTextSize("Ag", current_font, font_scale, thickness)
line_spacing_factor = 1.8 # Adjust for more or less space between lines
line_height = int(text_actual_height * line_spacing_factor)
line_height = max(line_height, 15) # Ensure a minimum line height
# Initial y_offset for the first line of text
y_offset_panel = max(line_height, 20) # Start considering top margin and text height
# --- End of Dynamic Text Parameter Calculations ---
cv2.putText(panel, "Model: Gladiator SupaDot", (10, y_offset_panel), current_font, font_scale, (0, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
if frame_count % 30 == 0: # Print every 30 frames to avoid flooding console
print(f"[MEDIAPIPE_PANEL] Frame {frame_count} - Current Pose for Panel: {current_pose}")
cv2.putText(panel, f"Pose: {current_pose}", (10, y_offset_panel), current_font, font_scale, (255, 0, 0), thickness, lineType=cv2.LINE_AA)
y_offset_panel += int(line_height * 1.5)
if 'error' not in analysis_results:
cv2.putText(panel, "Angles:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
for joint, angle in analysis_results.get('angles', {}).items():
text_to_display = f"{joint.capitalize()}: {angle:.1f} deg"
cv2.putText(panel, text_to_display, (20, y_offset_panel), current_font, font_scale, (0, 255, 0), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
if analysis_results.get('corrections'):
y_offset_panel += line_height
cv2.putText(panel, "Corrections:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
for correction in analysis_results.get('corrections', []):
cv2.putText(panel, f"β’ {correction}", (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
# Display notes if any
if analysis_results.get('notes'):
y_offset_panel += line_height
cv2.putText(panel, "Notes:", (10, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA) # Grey color for notes
y_offset_panel += line_height
for note in analysis_results.get('notes', []):
cv2.putText(panel, f"β’ {note}", (20, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
else:
cv2.putText(panel, "Error:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
cv2.putText(panel, analysis_results.get('error', 'Unknown error'), (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
combined_frame = np.hstack((processed_frame, panel)) # Use processed_frame from analyzer
out.write(combined_frame)
cap.release()
out.release()
if frame_count == 0:
raise ValueError("No frames were processed from the video by MediaPipe")
print(f"MediaPipe video processing completed. Processed {frame_count} frames. Output: {output_path}")
return url_for('serve_video', filename=output_filename, _external=False)
except Exception as e:
print(f'Error in process_video_mediapipe: {e}')
traceback.print_exc()
raise
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_file():
try:
if 'video' not in request.files:
print("[UPLOAD] No video file in request")
return jsonify({'error': 'No video file provided'}), 400
file = request.files['video']
if file.filename == '':
print("[UPLOAD] Empty filename")
return jsonify({'error': 'No selected file'}), 400
if file:
allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'}
if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
print(f"[UPLOAD] Invalid file format: {file.filename}")
return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400
# Ensure the filename is properly sanitized
filename = secure_filename(file.filename)
print(f"[UPLOAD] Original filename: {file.filename}")
print(f"[UPLOAD] Sanitized filename: {filename}")
# Create a unique filename to prevent conflicts
base, ext = os.path.splitext(filename)
unique_filename = f"{base}_{int(time.time())}{ext}"
filepath = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
print(f"[UPLOAD] Saving file to: {filepath}")
file.save(filepath)
if not os.path.exists(filepath):
print(f"[UPLOAD] File not found after save: {filepath}")
return jsonify({'error': 'Failed to save uploaded file'}), 500
print(f"[UPLOAD] File saved successfully. Size: {os.path.getsize(filepath)} bytes")
try:
model_choice = request.form.get('model_choice', 'Gladiator SupaDot')
print(f"[UPLOAD] Processing with model: {model_choice}")
if model_choice == 'movenet':
movenet_variant = request.form.get('movenet_variant', 'lightning')
print(f"[UPLOAD] Using MoveNet variant: {movenet_variant}")
output_path_url = process_video_movenet(filepath, model_variant=movenet_variant)
else:
output_path_url = process_video_mediapipe(filepath)
print(f"[UPLOAD] Processing complete. Output URL: {output_path_url}")
if not os.path.exists(os.path.join(app.config['UPLOAD_FOLDER'], os.path.basename(output_path_url))):
print(f"[UPLOAD] Output file not found: {output_path_url}")
return jsonify({'error': 'Output video file not found'}), 500
return jsonify({
'message': f'Video processed successfully with {model_choice}',
'output_path': output_path_url
})
except Exception as e:
print(f"[UPLOAD] Error processing video: {str(e)}")
traceback.print_exc()
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
finally:
try:
if os.path.exists(filepath):
os.remove(filepath)
print(f"[UPLOAD] Cleaned up input file: {filepath}")
except Exception as e:
print(f"[UPLOAD] Error cleaning up file: {str(e)}")
except Exception as e:
print(f"[UPLOAD] Unexpected error: {str(e)}")
traceback.print_exc()
return jsonify({'error': 'Internal server error'}), 500
if __name__ == '__main__':
# Ensure the port is 7860 and debug is False for HF Spaces deployment
app.run(host='0.0.0.0', port=7860, debug=False) |