Spaces:
Sleeping
Sleeping
File size: 13,736 Bytes
f20fe1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
from flask import Flask, render_template, request, jsonify, send_from_directory, url_for
from flask_cors import CORS
import cv2
import torch
import numpy as np
import os
from werkzeug.utils import secure_filename
import sys
import traceback
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
# Add bodybuilding_pose_analyzer to path
sys.path.append('.') # Assuming app.py is at the root of cv.github.io
from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer
from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer
app = Flask(__name__, static_url_path='/static', static_folder='static')
CORS(app, resources={r"/*": {"origins": "*"}})
app.config['UPLOAD_FOLDER'] = 'static/uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
try:
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
except PermissionError:
pass # Ignore if we can't create it (e.g., on HF Spaces)
# Load CNN model for bodybuilding pose classification
cnn_model_path = 'external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5'
cnn_model = load_model(cnn_model_path)
cnn_class_labels = ['Side Chest', 'Front Double Biceps', 'Back Double Biceps', 'Front Lat Spread', 'Back Lat Spread']
def predict_pose_cnn(img_path):
img = image.load_img(img_path, target_size=(150, 150))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) / 255.0
predictions = cnn_model.predict(img_array)
predicted_class = np.argmax(predictions, axis=1)
confidence = float(np.max(predictions))
return cnn_class_labels[predicted_class[0]], confidence
@app.route('/static/uploads/<path:filename>')
def serve_video(filename):
response = send_from_directory(app.config['UPLOAD_FOLDER'], filename, as_attachment=False)
# Ensure correct content type, especially for Safari/iOS if issues arise
if filename.lower().endswith('.mp4'):
response.headers['Content-Type'] = 'video/mp4'
return response
@app.after_request
def after_request(response):
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization,X-Requested-With,Accept')
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
return response
def process_video_movenet(video_path, model_variant='lightning', pose_type='front_double_biceps'):
try:
print(f"[PROCESS_VIDEO_MOVENET] Called with video_path: {video_path}, model_variant: {model_variant}, pose_type: {pose_type}")
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
analyzer = MoveNetAnalyzer(model_name=model_variant)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Processing video with MoveNet ({model_variant}): {width}x{height} @ {fps}fps")
output_filename = f'output_movenet_{model_variant}.mp4'
output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename)
fourcc = cv2.VideoWriter_fourcc(*'avc1')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
current_pose = pose_type # Initialized (e.g., to 'front_double_biceps')
segment_length = 4 * fps if fps > 0 else 120 # 4 seconds worth of frames
cnn_pose = None
last_valid_landmarks = None
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Detect pose and get landmarks, reusing last valid landmarks if needed
frame_with_pose, landmarks_analysis, landmarks = analyzer.process_frame(frame, current_pose, last_valid_landmarks=last_valid_landmarks)
if landmarks:
last_valid_landmarks = landmarks
# Every 4 seconds, classify the pose (rule-based and CNN)
if (frame_count - 1) % segment_length == 0:
if landmarks:
detected_pose = analyzer.classify_pose(landmarks)
print(f"[AUTO-POSE] Frame {frame_count}: Detected pose: {detected_pose}")
current_pose = detected_pose
else:
print(f"[AUTO-POSE] Frame {frame_count}: No landmarks detected, keeping previous pose: {current_pose}")
# CNN prediction (every 4 seconds)
temp_img_path = f'temp_frame_for_cnn_{frame_count}.jpg'
cv2.imwrite(temp_img_path, frame)
try:
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
print(f"[CNN] Frame {frame_count}: Pose: {cnn_pose_pred}, Conf: {cnn_conf:.2f}")
if cnn_conf >= 0.3:
current_pose = cnn_pose_pred # <--- HERE current_pose is updated
except Exception as e:
print(f"[CNN] Error predicting pose: {e}")
cnn_pose_pred, cnn_conf = None, 0.0
if os.path.exists(temp_img_path):
os.remove(temp_img_path)
# Determine best pose
if cnn_conf >= 0.3:
best_pose = cnn_pose_pred
elif landmarks:
best_pose = analyzer.classify_pose(landmarks)
else:
best_pose = 'Uncertain'
# Analyze using the current pose
analysis = analyzer.analyze_pose(landmarks, current_pose) if landmarks else {'error': 'No pose detected'}
# Overlay results
y_offset = 90
if 'error' not in analysis:
display_model_name = f"Gladiator {model_variant.capitalize()}"
cv2.putText(frame_with_pose, f"Model: {display_model_name}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
cv2.putText(frame_with_pose, f"Gladiator Pose: {best_pose}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
for joint, angle in analysis.get('angles', {}).items():
text_to_display = f"{joint.capitalize()}: {angle:.1f} deg"
cv2.putText(frame_with_pose, text_to_display,
(10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
y_offset += 25
for correction in analysis.get('corrections', []):
cv2.putText(frame_with_pose, correction,
(10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
y_offset += 25
else:
cv2.putText(frame_with_pose, analysis['error'],
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
out.write(frame_with_pose)
cap.release()
out.release()
if frame_count == 0:
raise ValueError("No frames were processed from the video by MoveNet")
print(f"MoveNet video processing completed. Processed {frame_count} frames. Output: {output_path}")
return url_for('serve_video', filename=output_filename, _external=False)
except Exception as e:
print(f'Error in process_video_movenet: {e}')
traceback.print_exc()
raise
def process_video_mediapipe(video_path):
try:
print(f"[PROCESS_VIDEO_MEDIAPIPE] Called with video_path: {video_path}")
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
analyzer = PoseAnalyzer()
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Processing video with MediaPipe: {width}x{height} @ {fps}fps")
output_filename = f'output_mediapipe.mp4'
output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename)
fourcc = cv2.VideoWriter_fourcc(*'avc1')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
cnn_pose = None
segment_length = 4 * fps if fps > 0 else 120 # 4 seconds worth of frames
last_valid_landmarks = None
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Detect pose and analyze, reusing last valid landmarks if needed
frame_with_pose, analysis, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks)
if landmarks:
last_valid_landmarks = landmarks
# Every 4 seconds, classify the pose using CNN
if (frame_count - 1) % segment_length == 0:
temp_img_path = 'temp_frame_for_cnn.jpg'
cv2.imwrite(temp_img_path, frame)
try:
cnn_pose, cnn_conf = predict_pose_cnn(temp_img_path)
print(f"[CNN] Confidence: {cnn_conf:.3f} for pose: {cnn_pose}")
except Exception as e:
print(f"[CNN] Error predicting pose: {e}")
cnn_pose, cnn_conf = None, 0.0
if os.path.exists(temp_img_path):
os.remove(temp_img_path)
# Determine best pose
if cnn_conf >= 0.3:
best_pose = cnn_pose
else:
best_pose = 'Uncertain'
# Overlay results
y_offset = 30
cv2.putText(frame_with_pose, f"Model: Gladiator SupaDot", (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
y_offset += 30
cv2.putText(frame_with_pose, f"Gladiator Pose: {best_pose}", (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
y_offset += 30
if 'error' not in analysis:
for joint, angle in analysis.get('angles', {}).items():
text_to_display = f"{joint.capitalize()}: {angle:.1f} deg"
cv2.putText(frame_with_pose, text_to_display, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
y_offset += 25
for correction in analysis.get('corrections', []):
cv2.putText(frame_with_pose, correction, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
y_offset += 25
else:
cv2.putText(frame_with_pose, analysis['error'], (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
out.write(frame_with_pose)
cap.release()
out.release()
if frame_count == 0:
raise ValueError("No frames were processed from the video by MediaPipe")
print(f"MediaPipe video processing completed. Processed {frame_count} frames. Output: {output_path}")
return url_for('serve_video', filename=output_filename, _external=False)
except Exception as e:
print(f'Error in process_video_mediapipe: {e}')
traceback.print_exc()
raise
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_file():
try:
if 'video' not in request.files:
return jsonify({'error': 'No video file provided'}), 400
file = request.files['video']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if file:
allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'}
if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
print(f"File saved to: {filepath}")
try:
model_choice = request.form.get('model_choice', 'Gladiator SupaDot')
if model_choice == 'movenet':
movenet_variant = request.form.get('movenet_variant', 'lightning')
output_path_url = process_video_movenet(filepath, model_variant=movenet_variant)
else:
output_path_url = process_video_mediapipe(filepath)
print(f"[DEBUG] Generated video URL for client: {output_path_url}")
return jsonify({
'message': f'Video processed successfully with {model_choice}',
'output_path': output_path_url
})
except Exception as e:
print(f"Error processing video: {e}")
traceback.print_exc()
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
finally:
if os.path.exists(filepath):
os.remove(filepath)
except Exception as e:
print(f"Error in upload_file: {e}")
traceback.print_exc()
return jsonify({'error': 'Internal server error'}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True) |