Spaces:
Sleeping
Sleeping
File size: 14,829 Bytes
c636b75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import cv2
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
from typing import List, Dict, Tuple
class MoveNetAnalyzer:
KEYPOINT_DICT = {
'nose': 0,
'left_eye': 1,
'right_eye': 2,
'left_ear': 3,
'right_ear': 4,
'left_shoulder': 5,
'right_shoulder': 6,
'left_elbow': 7,
'right_elbow': 8,
'left_wrist': 9,
'right_wrist': 10,
'left_hip': 11,
'right_hip': 12,
'left_knee': 13,
'right_knee': 14,
'left_ankle': 15,
'right_ankle': 16
}
def __init__(self, model_name="lightning"):
# Initialize MoveNet model
if model_name == "lightning":
self.model = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
self.input_size = 192
else: # thunder
self.model = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4")
self.input_size = 256
self.movenet = self.model.signatures['serving_default']
# Define key angles for bodybuilding poses
self.key_angles = {
'front_double_biceps': {
'shoulder_angle': (90, 120), # Expected angle range
'elbow_angle': (80, 100),
'wrist_angle': (0, 20)
},
'side_chest': {
'shoulder_angle': (45, 75),
'elbow_angle': (90, 110),
'wrist_angle': (0, 20)
},
'back_double_biceps': {
'shoulder_angle': (90, 120),
'elbow_angle': (80, 100),
'wrist_angle': (0, 20)
}
}
def detect_pose(self, frame: np.ndarray, last_valid_landmarks=None) -> Tuple[np.ndarray, List[Dict]]:
"""
Detect pose in the given frame and return the frame with pose landmarks drawn
and the list of detected landmarks.
If detection fails, reuse last valid landmarks if provided.
"""
# Resize and pad the image to keep aspect ratio
img = frame.copy()
img = tf.image.resize_with_pad(tf.expand_dims(img, axis=0), self.input_size, self.input_size)
img = tf.cast(img, dtype=tf.int32)
# Detection
results = self.movenet(img)
keypoints = results['output_0'].numpy() # Shape [1, 1, 17, 3]
# Draw the pose landmarks on the frame
if keypoints[0, 0, 0, 2] > 0.1: # Lowered confidence threshold for the nose
# Convert keypoints to image coordinates
y, x, c = frame.shape
shaped = np.squeeze(keypoints) # Shape [17, 3]
# Draw keypoints
for kp in shaped:
ky, kx, kp_conf = kp
if kp_conf > 0.1:
# Convert to image coordinates
x_coord = int(kx * x)
y_coord = int(ky * y)
cv2.circle(frame, (x_coord, y_coord), 6, (0, 255, 0), -1)
# Convert landmarks to a list of dictionaries
landmarks = []
for kp in shaped:
landmarks.append({
'x': float(kp[1]),
'y': float(kp[0]),
'visibility': float(kp[2])
})
return frame, landmarks
# If detection fails, reuse last valid landmarks if provided
if last_valid_landmarks is not None:
return frame, last_valid_landmarks
return frame, []
def calculate_angle(self, landmarks: List[Dict], joint1: int, joint2: int, joint3: int) -> float:
"""
Calculate the angle between three joints.
"""
if len(landmarks) < max(joint1, joint2, joint3):
return None
# Get the coordinates of the three joints
p1 = np.array([landmarks[joint1]['x'], landmarks[joint1]['y']])
p2 = np.array([landmarks[joint2]['x'], landmarks[joint2]['y']])
p3 = np.array([landmarks[joint3]['x'], landmarks[joint3]['y']])
# Calculate the angle
v1 = p1 - p2
v2 = p3 - p2
angle = np.degrees(np.arccos(
np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
))
return angle
def analyze_pose(self, landmarks: List[Dict], pose_type: str) -> Dict:
"""
Analyze the pose and provide feedback based on the pose_type.
Handles pose_types not in self.key_angles by providing a note.
"""
feedback = {
'pose_type': pose_type,
'angles': {},
'corrections': [],
'notes': [] # Initialize notes field
}
if not landmarks:
# If no landmarks, it's a more fundamental issue than just pose_type.
# The process_frame method already handles this by passing {'error': 'No pose detected'}
# from self.analyze_pose if landmarks is empty.
# However, to be safe, if this method is called directly with no landmarks:
feedback['error'] = 'No landmarks provided for analysis'
return feedback
if pose_type not in self.key_angles:
feedback['notes'].append(f"No specific angle checks defined for pose: {pose_type}")
# Still return the feedback structure, but angles and corrections will be empty.
# The 'error' field will not be set here, allowing app.py to distinguish this case.
return feedback
pose_rules = self.key_angles[pose_type]
if pose_type == 'front_double_biceps':
# Example: Left Shoulder - Elbow - Wrist for elbow angle
# Example: Left Hip - Shoulder - Elbow for shoulder angle (arm abduction)
# Note: These are examples, actual biomechanical definitions can be complex.
# We'll stick to the previous definition for front_double_biceps shoulder angle for now.
# Shoulder angle: right_hip - right_shoulder - right_elbow (can also use left)
# Elbow angle: right_shoulder - right_elbow - right_wrist (can also use left)
# Wrist angle (simplistic): right_elbow - right_wrist - a point slightly above wrist (not easily done without more points)
# Using right side for front_double_biceps as an example, consistent with a typical bodybuilding pose display
# Shoulder Angle (approximating arm abduction/flexion relative to torso)
# Using Right Hip, Right Shoulder, Right Elbow
rs = self.KEYPOINT_DICT['right_shoulder']
re = self.KEYPOINT_DICT['right_elbow']
rh = self.KEYPOINT_DICT['right_hip']
rw = self.KEYPOINT_DICT['right_wrist']
shoulder_angle = self.calculate_angle(landmarks, rh, rs, re)
if shoulder_angle is not None:
feedback['angles']['R Shoulder'] = shoulder_angle
if not (pose_rules['shoulder_angle'][0] <= shoulder_angle <= pose_rules['shoulder_angle'][1]):
# Debug print before forming correction string
print(f"[MOVENET_DEBUG_CORRECTION] pose_type: {pose_type}, rule_key: 'shoulder_angle', rules_for_angle: {pose_rules.get('shoulder_angle')}")
feedback['corrections'].append(
f"Adjust R Shoulder to {pose_rules['shoulder_angle'][0]}-{pose_rules['shoulder_angle'][1]} deg"
)
elbow_angle = self.calculate_angle(landmarks, rs, re, rw)
if elbow_angle is not None:
feedback['angles']['R Elbow'] = elbow_angle
if not (pose_rules['elbow_angle'][0] <= elbow_angle <= pose_rules['elbow_angle'][1]):
feedback['corrections'].append(
f"Adjust R Elbow to {pose_rules['elbow_angle'][0]}-{pose_rules['elbow_angle'][1]} deg"
)
# Wrist angle is hard to define meaningfully with current keypoints for this pose, skipping for now.
elif pose_type == 'side_chest':
# Assuming side chest often displays left side to judges
ls = self.KEYPOINT_DICT['left_shoulder']
le = self.KEYPOINT_DICT['left_elbow']
lw = self.KEYPOINT_DICT['left_wrist']
lh = self.KEYPOINT_DICT['left_hip'] # For shoulder angle relative to torso
# Shoulder angle (e.g. arm flexion/extension in sagittal plane for the front arm)
# For side chest, the front arm's shoulder angle relative to the torso (hip-shoulder-elbow)
shoulder_angle = self.calculate_angle(landmarks, lh, ls, le)
if shoulder_angle is not None:
feedback['angles']['L Shoulder'] = shoulder_angle
if not (pose_rules['shoulder_angle'][0] <= shoulder_angle <= pose_rules['shoulder_angle'][1]):
feedback['corrections'].append(
f"Adjust L Shoulder to {pose_rules['shoulder_angle'][0]}-{pose_rules['shoulder_angle'][1]} deg"
)
elbow_angle = self.calculate_angle(landmarks, ls, le, lw)
if elbow_angle is not None:
feedback['angles']['L Elbow'] = elbow_angle
if not (pose_rules['elbow_angle'][0] <= elbow_angle <= pose_rules['elbow_angle'][1]):
feedback['corrections'].append(
f"Adjust L Elbow to {pose_rules['elbow_angle'][0]}-{pose_rules['elbow_angle'][1]} deg"
)
# Wrist angle for side chest is also nuanced, skipping detailed check for now.
elif pose_type == 'back_double_biceps':
# Similar to front, but from back. We can calculate for both arms or pick one.
# Let's do right side for consistency with front_double_biceps example.
rs = self.KEYPOINT_DICT['right_shoulder']
re = self.KEYPOINT_DICT['right_elbow']
rh = self.KEYPOINT_DICT['right_hip']
rw = self.KEYPOINT_DICT['right_wrist']
shoulder_angle = self.calculate_angle(landmarks, rh, rs, re)
if shoulder_angle is not None:
feedback['angles']['R Shoulder'] = shoulder_angle
if not (pose_rules['shoulder_angle'][0] <= shoulder_angle <= pose_rules['shoulder_angle'][1]):
feedback['corrections'].append(
f"Adjust R Shoulder to {pose_rules['shoulder_angle'][0]}-{pose_rules['shoulder_angle'][1]} deg"
)
elbow_angle = self.calculate_angle(landmarks, rs, re, rw)
if elbow_angle is not None:
feedback['angles']['R Elbow'] = elbow_angle
if not (pose_rules['elbow_angle'][0] <= elbow_angle <= pose_rules['elbow_angle'][1]):
feedback['corrections'].append(
f"Adjust R Elbow to {pose_rules['elbow_angle'][0]}-{pose_rules['elbow_angle'][1]} deg"
)
# Clear notes if pose_type was valid and processed, unless specific notes were added by pose logic
if not feedback['notes']: # Only clear if no specific notes were added during pose rule processing
feedback.pop('notes', None)
return feedback
def process_frame(self, frame: np.ndarray, pose_type: str = 'front_double_biceps', last_valid_landmarks=None) -> Tuple[np.ndarray, Dict, List[Dict]]:
"""
Process a single frame, detect pose, and analyze it. Returns frame, analysis, and used landmarks.
"""
# Detect pose
frame_with_pose, landmarks = self.detect_pose(frame, last_valid_landmarks=last_valid_landmarks)
# Analyze pose if landmarks are detected
analysis = self.analyze_pose(landmarks, pose_type) if landmarks else {'error': 'No pose detected'}
return frame_with_pose, analysis, landmarks
def classify_pose(self, landmarks: List[Dict]) -> str:
"""
Classify the pose based on keypoint positions and angles.
Returns one of: 'front_double_biceps', 'side_chest', 'back_double_biceps'.
"""
if not landmarks or len(landmarks) < 17:
return 'front_double_biceps' # Default/fallback
# Calculate angles for both arms
# Right side
rs = self.KEYPOINT_DICT['right_shoulder']
re = self.KEYPOINT_DICT['right_elbow']
rh = self.KEYPOINT_DICT['right_hip']
rw = self.KEYPOINT_DICT['right_wrist']
# Left side
ls = self.KEYPOINT_DICT['left_shoulder']
le = self.KEYPOINT_DICT['left_elbow']
lh = self.KEYPOINT_DICT['left_hip']
lw = self.KEYPOINT_DICT['left_wrist']
# Shoulder angles
r_shoulder_angle = self.calculate_angle(landmarks, rh, rs, re)
l_shoulder_angle = self.calculate_angle(landmarks, lh, ls, le)
# Elbow angles
r_elbow_angle = self.calculate_angle(landmarks, rs, re, rw)
l_elbow_angle = self.calculate_angle(landmarks, ls, le, lw)
# Heuristic rules:
# - Front double biceps: both arms raised, elbows bent, both shoulders abducted
# - Side chest: one arm across chest (elbow in front of body), other arm flexed
# - Back double biceps: both arms raised, elbows bent, but person is facing away (shoulders/hips x order reversed)
# Use x-coordinates to estimate facing direction
# If right shoulder x < left shoulder x, assume facing front; else, facing back
facing_front = landmarks[rs]['x'] < landmarks[ls]['x']
# Count how many arms are "up" (shoulder angle in expected range)
arms_up = 0
if r_shoulder_angle and 80 < r_shoulder_angle < 150:
arms_up += 1
if l_shoulder_angle and 80 < l_shoulder_angle < 150:
arms_up += 1
elbows_bent = 0
if r_elbow_angle and 60 < r_elbow_angle < 130:
elbows_bent += 1
if l_elbow_angle and 60 < l_elbow_angle < 130:
elbows_bent += 1
# Side chest: one arm's elbow is much closer to the body's midline (x of elbow near x of nose)
nose_x = landmarks[self.KEYPOINT_DICT['nose']]['x']
le_x = landmarks[le]['x']
re_x = landmarks[re]['x']
side_chest_like = (abs(le_x - nose_x) < 0.08 or abs(re_x - nose_x) < 0.08)
if arms_up == 2 and elbows_bent == 2:
if facing_front:
return 'front_double_biceps'
else:
return 'back_double_biceps'
elif side_chest_like:
return 'side_chest'
else:
# Default/fallback
return 'front_double_biceps' |