Spaces:
Sleeping
Sleeping
Ben Wolfson
commited on
Commit
·
a657511
1
Parent(s):
3a9ad40
Updated cnn
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- CNN.ipynb +255 -11
- dataset/test/bench/bench_0.jpg +3 -0
- dataset/test/bench/bench_105.jpg +3 -0
- dataset/test/bench/bench_106.jpg +3 -0
- dataset/test/bench/bench_11.jpg +3 -0
- dataset/test/bench/bench_115.jpg +3 -0
- dataset/test/bench/bench_116.jpg +3 -0
- dataset/test/bench/bench_121.jpg +3 -0
- dataset/test/bench/bench_13.jpg +3 -0
- dataset/test/bench/bench_133.jpg +3 -0
- dataset/test/bench/bench_136.jpg +3 -0
- dataset/test/bench/bench_149.jpg +3 -0
- dataset/test/bench/bench_152.jpg +3 -0
- dataset/test/bench/bench_23.jpg +3 -0
- dataset/test/bench/bench_24.jpg +3 -0
- dataset/test/bench/bench_29.jpg +3 -0
- dataset/test/bench/bench_41.jpg +3 -0
- dataset/test/bench/bench_5.jpg +3 -0
- dataset/test/bench/bench_52.jpg +3 -0
- dataset/test/bench/bench_60.jpg +3 -0
- dataset/test/bench/bench_62.jpg +3 -0
- dataset/test/bench/bench_70.jpg +3 -0
- dataset/test/bench/bench_71.jpg +3 -0
- dataset/test/bench/bench_72.jpg +3 -0
- dataset/test/bench/bench_75.jpg +3 -0
- dataset/test/bench/bench_78.jpg +3 -0
- dataset/test/bench/bench_79.jpg +3 -0
- dataset/test/bench/bench_80.jpg +3 -0
- dataset/test/bench/bench_86.jpg +3 -0
- dataset/test/bench/bench_89.jpg +3 -0
- dataset/test/bench/bench_9.jpg +3 -0
- dataset/test/bench/bench_95.jpg +3 -0
- dataset/test/bench/bench_96.jpg +3 -0
- dataset/test/bench/bench_97.jpg +3 -0
- dataset/test/bench/bench_99.jpg +3 -0
- dataset/test/deadlift/deadlift_11.jpg +3 -0
- dataset/test/deadlift/deadlift_12.jpg +3 -0
- dataset/test/deadlift/deadlift_121.jpg +3 -0
- dataset/test/deadlift/deadlift_125.jpg +3 -0
- dataset/test/deadlift/deadlift_134.jpg +3 -0
- dataset/test/deadlift/deadlift_135.jpg +3 -0
- dataset/test/deadlift/deadlift_141.jpg +3 -0
- dataset/test/deadlift/deadlift_157.jpg +3 -0
- dataset/test/deadlift/deadlift_158.jpg +3 -0
- dataset/test/deadlift/deadlift_17.jpg +3 -0
- dataset/test/deadlift/deadlift_171.jpg +3 -0
- dataset/test/deadlift/deadlift_172.jpg +3 -0
- dataset/test/deadlift/deadlift_173.jpg +3 -0
- dataset/test/deadlift/deadlift_182.jpg +3 -0
- dataset/test/deadlift/deadlift_190.jpg +3 -0
CNN.ipynb
CHANGED
@@ -2,31 +2,275 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
-
"#
|
10 |
-
"
|
11 |
-
"import
|
12 |
-
"
|
13 |
-
"
|
14 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
]
|
16 |
},
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
"metadata": {},
|
21 |
"outputs": [],
|
22 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
},
|
24 |
{
|
25 |
"cell_type": "code",
|
26 |
-
"execution_count":
|
27 |
"metadata": {},
|
28 |
"outputs": [],
|
29 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
},
|
31 |
{
|
32 |
"cell_type": "code",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 36,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
+
"# File renaming for consistency\n",
|
10 |
+
"import os\n",
|
11 |
+
"from os import path\n",
|
12 |
+
"\n",
|
13 |
+
"for count, filename in enumerate(os.listdir(\"deadlift2\")):\n",
|
14 |
+
" src = \"deadlift2/\" + filename\n",
|
15 |
+
" string = \"deadlift2/deadlift_\" + str(count) + \".jpg\"\n",
|
16 |
+
" os.rename(src, string)"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos-of-dogs-and-cats/"
|
24 |
]
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
+
"execution_count": 37,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"(549,) ()\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"from os import listdir\n",
|
41 |
+
"from numpy import asarray\n",
|
42 |
+
"from numpy import save\n",
|
43 |
+
"from keras.preprocessing.image import load_img\n",
|
44 |
+
"from keras.preprocessing.image import img_to_array\n",
|
45 |
+
"\n",
|
46 |
+
"folder = \"train/\"\n",
|
47 |
+
"photos, labels = list(), list()\n",
|
48 |
+
"\n",
|
49 |
+
"for file in listdir(folder):\n",
|
50 |
+
" output = 0.0\n",
|
51 |
+
" if file.startswith(\"squat\"):\n",
|
52 |
+
" output = 1.0\n",
|
53 |
+
" if file.startswith(\"deadlift\"):\n",
|
54 |
+
" output = 2.0\n",
|
55 |
+
" photo = load_img(folder + file, target_size=(150,150))\n",
|
56 |
+
" photo = img_to_array\n",
|
57 |
+
" \n",
|
58 |
+
" photos.append(photo)\n",
|
59 |
+
" labels.append(output)\n",
|
60 |
+
"photos = asarray(photos)\n",
|
61 |
+
"labels = asarray(output)\n",
|
62 |
+
"print(photos.shape, labels.shape)\n",
|
63 |
+
"\n",
|
64 |
+
"save(\"exercise_photos.npy\", photos)\n",
|
65 |
+
"save(\"exercise_labels.npy\", photos)"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 39,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [
|
73 |
+
{
|
74 |
+
"name": "stdout",
|
75 |
+
"output_type": "stream",
|
76 |
+
"text": [
|
77 |
+
"(549,) (549,)\n"
|
78 |
+
]
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"source": [
|
82 |
+
"from numpy import load\n",
|
83 |
+
"photos = load(\"exercise_photos.npy\",allow_pickle=True)\n",
|
84 |
+
"labels = load(\"exercise_labels.npy\",allow_pickle=True)\n",
|
85 |
+
"\n",
|
86 |
+
"print(photos.shape, labels.shape)"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 42,
|
92 |
"metadata": {},
|
93 |
"outputs": [],
|
94 |
+
"source": [
|
95 |
+
"# Directory Generation\n",
|
96 |
+
"from os import makedirs\n",
|
97 |
+
"dataset_home = \"dataset/\"\n",
|
98 |
+
"subdirs = [\"train/\", \"test/\"]\n",
|
99 |
+
"for subdir in subdirs:\n",
|
100 |
+
" # create label subdirectories\n",
|
101 |
+
" labeldirs = [\"bench/\", \"squat/\", \"deadlift/\"]\n",
|
102 |
+
" for labldir in labeldirs:\n",
|
103 |
+
" newdir = dataset_home + subdir + labldir\n",
|
104 |
+
" makedirs(newdir)"
|
105 |
+
]
|
106 |
},
|
107 |
{
|
108 |
"cell_type": "code",
|
109 |
+
"execution_count": 46,
|
110 |
"metadata": {},
|
111 |
"outputs": [],
|
112 |
+
"source": [
|
113 |
+
"# Segment into testing and training images\n",
|
114 |
+
"import random\n",
|
115 |
+
"from shutil import copyfile\n",
|
116 |
+
"random.seed(1)\n",
|
117 |
+
"ratio = 0.2\n",
|
118 |
+
"dataset_home = \"dataset/\"\n",
|
119 |
+
"src_directory = \"images/\"\n",
|
120 |
+
"for file in listdir(src_directory):\n",
|
121 |
+
" src = src_directory + '/' + file\n",
|
122 |
+
" dst_dir = \"train/\"\n",
|
123 |
+
" if random.random() < ratio:\n",
|
124 |
+
" dst_dir = \"test/\"\n",
|
125 |
+
" if file.startswith(\"bench\"):\n",
|
126 |
+
" dst = dataset_home + dst_dir + \"bench/\" + file\n",
|
127 |
+
" elif file.startswith(\"squat\"):\n",
|
128 |
+
" dst = dataset_home + dst_dir + \"squat/\" + file\n",
|
129 |
+
" else:\n",
|
130 |
+
" dst = dataset_home + dst_dir + \"deadlift/\" + file\n",
|
131 |
+
" copyfile(src, dst) "
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": 58,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [
|
139 |
+
{
|
140 |
+
"name": "stdout",
|
141 |
+
"output_type": "stream",
|
142 |
+
"text": [
|
143 |
+
"Found 448 images belonging to 3 classes.\n",
|
144 |
+
"Found 101 images belonging to 3 classes.\n"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"ename": "ValueError",
|
149 |
+
"evalue": "in user code:\n\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:806 train_function *\n return step_function(self, iterator)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:796 step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:1211 run\n return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2585 call_for_each_replica\n return self._call_for_each_replica(fn, args, kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2945 _call_for_each_replica\n return fn(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:789 run_step **\n outputs = model.train_step(data)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:748 train_step\n loss = self.compiled_loss(\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\compile_utils.py:204 __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:149 __call__\n losses = ag_call(y_true, y_pred)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:253 call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:1535 categorical_crossentropy\n return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\backend.py:4687 categorical_crossentropy\n target.shape.assert_is_compatible_with(output.shape)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\tensor_shape.py:1134 assert_is_compatible_with\n raise ValueError(\"Shapes %s and %s are incompatible\" % (self, other))\n\n ValueError: Shapes (None, 1) and (None, 10) are incompatible\n",
|
150 |
+
"output_type": "error",
|
151 |
+
"traceback": [
|
152 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
153 |
+
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
|
154 |
+
"\u001b[1;32m<ipython-input-58-08697642c99a>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 99\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 100\u001b[0m \u001b[1;31m# entry point, run the test harness\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 101\u001b[1;33m \u001b[0mrun_test_harness\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
155 |
+
"\u001b[1;32m<ipython-input-58-08697642c99a>\u001b[0m in \u001b[0;36mrun_test_harness\u001b[1;34m()\u001b[0m\n\u001b[0;32m 90\u001b[0m class_mode='binary', batch_size=64, target_size=(150, 150))\n\u001b[0;32m 91\u001b[0m \u001b[1;31m# fit model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 92\u001b[1;33m history = model.fit(train_it, steps_per_epoch=len(train_it),\n\u001b[0m\u001b[0;32m 93\u001b[0m validation_data=test_it, validation_steps=len(test_it), epochs=20, verbose=0)\n\u001b[0;32m 94\u001b[0m \u001b[1;31m# evaluate model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
156 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_method_wrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 106\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_method_wrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 107\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_in_multi_worker_mode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 108\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 109\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 110\u001b[0m \u001b[1;31m# Running inside `run_distribute_coordinator` already.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
157 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1096\u001b[0m batch_size=batch_size):\n\u001b[0;32m 1097\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1098\u001b[1;33m \u001b[0mtmp_logs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtrain_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1099\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1100\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
158 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 778\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 779\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"nonXla\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 780\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 781\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 782\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_tracing_count\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
159 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 821\u001b[0m \u001b[1;31m# This is the first call of __call__, so we have to initialize.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 822\u001b[0m \u001b[0minitializers\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 823\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_initialize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0madd_initializers_to\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0minitializers\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 824\u001b[0m \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 825\u001b[0m \u001b[1;31m# At this point we know that the initialization is complete (or less\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
160 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_initialize\u001b[1;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[0;32m 694\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_graph_deleter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mFunctionDeleter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_lifted_initializer_graph\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 695\u001b[0m self._concrete_stateful_fn = (\n\u001b[1;32m--> 696\u001b[1;33m self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access\n\u001b[0m\u001b[0;32m 697\u001b[0m *args, **kwds))\n\u001b[0;32m 698\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
161 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_get_concrete_function_internal_garbage_collected\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2853\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2854\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_lock\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2855\u001b[1;33m \u001b[0mgraph_function\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_maybe_define_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2856\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2857\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
162 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_maybe_define_function\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m 3211\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3212\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmissed\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcall_context_key\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3213\u001b[1;33m \u001b[0mgraph_function\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_create_graph_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3214\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprimary\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mcache_key\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3215\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
163 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_create_graph_function\u001b[1;34m(self, args, kwargs, override_flat_arg_shapes)\u001b[0m\n\u001b[0;32m 3063\u001b[0m \u001b[0marg_names\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbase_arg_names\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mmissing_arg_names\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3064\u001b[0m graph_function = ConcreteFunction(\n\u001b[1;32m-> 3065\u001b[1;33m func_graph_module.func_graph_from_py_func(\n\u001b[0m\u001b[0;32m 3066\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3067\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_python_function\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
164 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py\u001b[0m in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)\u001b[0m\n\u001b[0;32m 984\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moriginal_func\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_decorator\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munwrap\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpython_func\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 985\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 986\u001b[1;33m \u001b[0mfunc_outputs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpython_func\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mfunc_args\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mfunc_kwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 987\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 988\u001b[0m \u001b[1;31m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
165 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36mwrapped_fn\u001b[1;34m(*args, **kwds)\u001b[0m\n\u001b[0;32m 598\u001b[0m \u001b[1;31m# __wrapped__ allows AutoGraph to swap in a converted function. We give\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 599\u001b[0m \u001b[1;31m# the function a weak reference to itself to avoid a reference cycle.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 600\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mweak_wrapped_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__wrapped__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 601\u001b[0m \u001b[0mweak_wrapped_fn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mweakref\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mref\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mwrapped_fn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 602\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
166 |
+
"\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 971\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint:disable=broad-except\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 972\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"ag_error_metadata\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 973\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mag_error_metadata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mto_exception\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 974\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 975\u001b[0m \u001b[1;32mraise\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
167 |
+
"\u001b[1;31mValueError\u001b[0m: in user code:\n\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:806 train_function *\n return step_function(self, iterator)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:796 step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:1211 run\n return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2585 call_for_each_replica\n return self._call_for_each_replica(fn, args, kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2945 _call_for_each_replica\n return fn(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:789 run_step **\n outputs = model.train_step(data)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:748 train_step\n loss = self.compiled_loss(\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\compile_utils.py:204 __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:149 __call__\n losses = ag_call(y_true, y_pred)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:253 call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:1535 categorical_crossentropy\n return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\backend.py:4687 categorical_crossentropy\n target.shape.assert_is_compatible_with(output.shape)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\tensor_shape.py:1134 assert_is_compatible_with\n raise ValueError(\"Shapes %s and %s are incompatible\" % (self, other))\n\n ValueError: Shapes (None, 1) and (None, 10) are incompatible\n"
|
168 |
+
]
|
169 |
+
}
|
170 |
+
],
|
171 |
+
"source": [
|
172 |
+
"# Baseline CNN Model\n",
|
173 |
+
"import sys\n",
|
174 |
+
"from matplotlib import pyplot\n",
|
175 |
+
"import keras\n",
|
176 |
+
"from keras.utils import to_categorical\n",
|
177 |
+
"from keras.models import Sequential\n",
|
178 |
+
"from keras.layers import Conv2D\n",
|
179 |
+
"from keras.layers import MaxPooling2D\n",
|
180 |
+
"from keras.layers import Dense\n",
|
181 |
+
"from keras.layers import Flatten\n",
|
182 |
+
"from keras.layers import Dropout\n",
|
183 |
+
"from keras.optimizers import SGD\n",
|
184 |
+
"from keras.preprocessing.image import ImageDataGenerator\n",
|
185 |
+
" \n",
|
186 |
+
"# one block VGG\n",
|
187 |
+
"\"\"\"\n",
|
188 |
+
"def define_model():\n",
|
189 |
+
" model = Sequential()\n",
|
190 |
+
" model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=(150, 150, 3)))\n",
|
191 |
+
" model.add(MaxPooling2D((2, 2)))\n",
|
192 |
+
" model.add(Flatten())\n",
|
193 |
+
" model.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))\n",
|
194 |
+
" model.add(Dense(1, activation='sigmoid'))\n",
|
195 |
+
" # compile model\n",
|
196 |
+
" opt = SGD(lr=0.001, momentum=0.9)\n",
|
197 |
+
" model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])\n",
|
198 |
+
" return model\n",
|
199 |
+
"\"\"\"\n",
|
200 |
+
"\"\"\"\n",
|
201 |
+
"# two block VGG\n",
|
202 |
+
"def define_model():\n",
|
203 |
+
" model = Sequential()\n",
|
204 |
+
" model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=(150, 150, 3)))\n",
|
205 |
+
" model.add(MaxPooling2D((2, 2)))\n",
|
206 |
+
" model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))\n",
|
207 |
+
" model.add(MaxPooling2D((2, 2)))\n",
|
208 |
+
" model.add(Flatten())\n",
|
209 |
+
" model.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))\n",
|
210 |
+
" model.add(Dense(1, activation='sigmoid'))\n",
|
211 |
+
" # compile model\n",
|
212 |
+
" opt = SGD(lr=0.001, momentum=0.9)\n",
|
213 |
+
" model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])\n",
|
214 |
+
" return model\n",
|
215 |
+
"\"\"\"\n",
|
216 |
+
"# three block VGG\n",
|
217 |
+
"def define_model():\n",
|
218 |
+
"\n",
|
219 |
+
" cnn1 = Sequential()\n",
|
220 |
+
" cnn1.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))\n",
|
221 |
+
" cnn1.add(MaxPooling2D((2, 2)))\n",
|
222 |
+
" cnn1.add(Dropout(0.2))\n",
|
223 |
+
"\n",
|
224 |
+
" cnn1.add(Flatten())\n",
|
225 |
+
"\n",
|
226 |
+
" cnn1.add(Dense(128, activation='relu'))\n",
|
227 |
+
" cnn1.add(Dense(10, activation='softmax'))\n",
|
228 |
+
"\n",
|
229 |
+
" cnn1.compile(loss=keras.losses.categorical_crossentropy,\n",
|
230 |
+
" optimizer=keras.optimizers.Adam(),\n",
|
231 |
+
" metrics=['accuracy'])\n",
|
232 |
+
" return cnn1\n",
|
233 |
+
"\n",
|
234 |
+
"# plot diagnostic learning curves\n",
|
235 |
+
"def summarize_diagnostics(history):\n",
|
236 |
+
" # plot loss\n",
|
237 |
+
" pyplot.subplot(211)\n",
|
238 |
+
" pyplot.title('Cross Entropy Loss')\n",
|
239 |
+
" pyplot.plot(history.history['loss'], color='blue', label='train')\n",
|
240 |
+
" pyplot.plot(history.history['val_loss'], color='orange', label='test')\n",
|
241 |
+
" # plot accuracy\n",
|
242 |
+
" pyplot.subplot(212)\n",
|
243 |
+
" pyplot.title('Classification Accuracy')\n",
|
244 |
+
" pyplot.plot(history.history['accuracy'], color='blue', label='train')\n",
|
245 |
+
" pyplot.plot(history.history['val_accuracy'], color='orange', label='test')\n",
|
246 |
+
" # save plot to file\n",
|
247 |
+
" filename = sys.argv[0].split('/')[-1]\n",
|
248 |
+
" pyplot.savefig(filename + '_plot.png')\n",
|
249 |
+
" pyplot.close()\n",
|
250 |
+
" \n",
|
251 |
+
"# run the test harness for evaluating a model\n",
|
252 |
+
"def run_test_harness():\n",
|
253 |
+
" # define model\n",
|
254 |
+
" model = define_model()\n",
|
255 |
+
" # create data generator\n",
|
256 |
+
" datagen = ImageDataGenerator(rescale=1.0/255.0)\n",
|
257 |
+
" # prepare iterators\n",
|
258 |
+
" train_it = datagen.flow_from_directory('dataset/train/',\n",
|
259 |
+
" class_mode='binary', batch_size=64, target_size=(150, 150))\n",
|
260 |
+
" test_it = datagen.flow_from_directory('dataset/test/',\n",
|
261 |
+
" class_mode='binary', batch_size=64, target_size=(150, 150))\n",
|
262 |
+
" # fit model\n",
|
263 |
+
" history = model.fit(train_it, steps_per_epoch=len(train_it),\n",
|
264 |
+
" validation_data=test_it, validation_steps=len(test_it), epochs=20, verbose=0)\n",
|
265 |
+
" # evaluate model\n",
|
266 |
+
" _, acc = model.evaluate_generator(test_it, steps=len(test_it), verbose=0)\n",
|
267 |
+
" print('> %.3f' % (acc * 100.0))\n",
|
268 |
+
" # learning curves\n",
|
269 |
+
" summarize_diagnostics(history)\n",
|
270 |
+
" \n",
|
271 |
+
"# entry point, run the test harness\n",
|
272 |
+
"run_test_harness()\n"
|
273 |
+
]
|
274 |
},
|
275 |
{
|
276 |
"cell_type": "code",
|
dataset/test/bench/bench_0.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_105.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_106.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_11.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_115.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_116.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_121.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_13.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_133.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_136.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_149.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_152.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_23.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_24.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_29.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_41.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_5.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_52.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_60.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_62.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_70.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_71.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_72.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_75.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_78.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_79.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_80.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_86.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_89.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_9.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_95.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_96.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_97.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/bench/bench_99.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_11.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_12.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_121.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_125.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_134.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_135.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_141.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_157.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_158.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_17.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_171.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_172.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_173.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_182.jpg
ADDED
![]() |
Git LFS Details
|
dataset/test/deadlift/deadlift_190.jpg
ADDED
![]() |
Git LFS Details
|