Spaces:
Sleeping
Sleeping
Sean Carnahan
commited on
Commit
·
cd361a4
1
Parent(s):
fbef789
Update for HF Spaces deployment: Add memory management, error handling, and logging
Browse files- .gitignore +43 -0
- Dockerfile +14 -20
- README.md +49 -0
- app.py +82 -154
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
env/
|
8 |
+
build/
|
9 |
+
develop-eggs/
|
10 |
+
dist/
|
11 |
+
downloads/
|
12 |
+
eggs/
|
13 |
+
.eggs/
|
14 |
+
lib/
|
15 |
+
lib64/
|
16 |
+
parts/
|
17 |
+
sdist/
|
18 |
+
var/
|
19 |
+
wheels/
|
20 |
+
*.egg-info/
|
21 |
+
.installed.cfg
|
22 |
+
*.egg
|
23 |
+
|
24 |
+
# Virtual Environment
|
25 |
+
venv/
|
26 |
+
ENV/
|
27 |
+
|
28 |
+
# IDE
|
29 |
+
.idea/
|
30 |
+
.vscode/
|
31 |
+
*.swp
|
32 |
+
*.swo
|
33 |
+
|
34 |
+
# Project specific
|
35 |
+
static/uploads/
|
36 |
+
temp_frame_for_cnn_*.jpg
|
37 |
+
*.mp4
|
38 |
+
*.avi
|
39 |
+
*.mov
|
40 |
+
*.mkv
|
41 |
+
|
42 |
+
# Logs
|
43 |
+
*.log
|
Dockerfile
CHANGED
@@ -1,35 +1,29 @@
|
|
1 |
-
|
2 |
-
FROM python:3.9-slim
|
3 |
|
4 |
-
WORKDIR /
|
5 |
|
6 |
# Install system dependencies
|
7 |
-
RUN apt-get update && apt-get install -y
|
8 |
libgl1-mesa-glx \
|
9 |
libglib2.0-0 \
|
10 |
&& rm -rf /var/lib/apt/lists/*
|
11 |
|
|
|
12 |
COPY requirements.txt .
|
13 |
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
COPY app.py .
|
21 |
-
RUN echo "Listing files:" && ls -la # Debug: List files in the build context root
|
22 |
-
COPY bodybuilding_pose_analyzer bodybuilding_pose_analyzer
|
23 |
-
COPY external external
|
24 |
-
# COPY yolov7 yolov7
|
25 |
-
# COPY yolov7-w6-pose.pt .
|
26 |
-
COPY static static
|
27 |
-
COPY templates templates
|
28 |
|
29 |
-
#
|
30 |
-
|
|
|
31 |
|
|
|
32 |
EXPOSE 7860
|
33 |
|
34 |
-
#
|
35 |
-
CMD ["
|
|
|
1 |
+
FROM python:3.10-slim
|
|
|
2 |
|
3 |
+
WORKDIR /code
|
4 |
|
5 |
# Install system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
libgl1-mesa-glx \
|
8 |
libglib2.0-0 \
|
9 |
&& rm -rf /var/lib/apt/lists/*
|
10 |
|
11 |
+
# Copy requirements first to leverage Docker cache
|
12 |
COPY requirements.txt .
|
13 |
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
|
15 |
+
# Copy the rest of the application
|
16 |
+
COPY . .
|
17 |
|
18 |
+
# Create necessary directories
|
19 |
+
RUN mkdir -p static/uploads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Set environment variables
|
22 |
+
ENV PYTHONUNBUFFERED=1
|
23 |
+
ENV FLASK_APP=app.py
|
24 |
|
25 |
+
# Expose the port
|
26 |
EXPOSE 7860
|
27 |
|
28 |
+
# Run the application
|
29 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
@@ -71,6 +71,55 @@ This Space uses a Flask backend with various machine learning models for pose es
|
|
71 |
* The feedback provided is based on predefined angle ranges and may not cover all nuances of perfect form.
|
72 |
* Processing time can be significant for longer videos or when using more computationally intensive models.
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
---
|
75 |
|
76 |
*Remember to replace placeholder links and add any other specific information relevant to your project!*
|
|
|
71 |
* The feedback provided is based on predefined angle ranges and may not cover all nuances of perfect form.
|
72 |
* Processing time can be significant for longer videos or when using more computationally intensive models.
|
73 |
|
74 |
+
## Setup
|
75 |
+
|
76 |
+
1. Install dependencies:
|
77 |
+
```bash
|
78 |
+
pip install -r requirements.txt
|
79 |
+
```
|
80 |
+
|
81 |
+
2. Ensure the model files are in place:
|
82 |
+
- CNN model: `external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5`
|
83 |
+
|
84 |
+
3. Run the application:
|
85 |
+
```bash
|
86 |
+
python app.py
|
87 |
+
```
|
88 |
+
|
89 |
+
The application will be available at `http://localhost:7860`
|
90 |
+
|
91 |
+
## Usage
|
92 |
+
|
93 |
+
1. Open the web interface
|
94 |
+
2. Select a video file (supported formats: mp4, avi, mov, mkv)
|
95 |
+
3. Choose the model (Gladiator SupaDot or MoveNet)
|
96 |
+
4. Upload and wait for processing
|
97 |
+
5. View the results with pose detection, angles, and corrections
|
98 |
+
|
99 |
+
## Models
|
100 |
+
|
101 |
+
- **Gladiator SupaDot**: Custom pose analyzer with detailed angle measurements and form corrections
|
102 |
+
- **MoveNet**: Google's pose detection model for basic pose tracking
|
103 |
+
|
104 |
+
## Dependencies
|
105 |
+
|
106 |
+
- Flask
|
107 |
+
- OpenCV
|
108 |
+
- TensorFlow
|
109 |
+
- MediaPipe
|
110 |
+
- NumPy
|
111 |
+
- Other dependencies listed in requirements.txt
|
112 |
+
|
113 |
+
## Notes
|
114 |
+
|
115 |
+
- Maximum video file size: 100MB
|
116 |
+
- Processing time depends on video length and available hardware
|
117 |
+
- GPU acceleration is automatically enabled if available
|
118 |
+
|
119 |
+
## License
|
120 |
+
|
121 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
122 |
+
|
123 |
---
|
124 |
|
125 |
*Remember to replace placeholder links and add any other specific information relevant to your project!*
|
app.py
CHANGED
@@ -12,6 +12,9 @@ from tensorflow.keras.models import load_model
|
|
12 |
from tensorflow.keras.preprocessing import image
|
13 |
import time
|
14 |
import tensorflow_hub as hub
|
|
|
|
|
|
|
15 |
|
16 |
# Check GPU availability
|
17 |
print("[GPU] Checking GPU availability...")
|
@@ -32,13 +35,20 @@ sys.path.append('.') # Assuming app.py is at the root of cv.github.io
|
|
32 |
from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer
|
33 |
from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer
|
34 |
|
35 |
-
#
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def wrap_text(text: str, font_face: int, font_scale: float, thickness: int, max_width: int) -> list[str]:
|
44 |
"""Wrap text to fit within max_width."""
|
@@ -83,25 +93,6 @@ app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024 # 100MB max file size
|
|
83 |
# Ensure upload directory exists
|
84 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
85 |
|
86 |
-
# Initialize YOLOv7 model
|
87 |
-
# device = select_device('')
|
88 |
-
# yolo_model = None # Initialize as None
|
89 |
-
# stride = None
|
90 |
-
# imgsz = None
|
91 |
-
|
92 |
-
# try:
|
93 |
-
# yolo_model = attempt_load('yolov7-w6-pose.pt', map_location=device)
|
94 |
-
# stride = int(yolo_model.stride.max())
|
95 |
-
# imgsz = check_img_size(640, s=stride)
|
96 |
-
# print("YOLOv7 Model loaded successfully")
|
97 |
-
# except Exception as e:
|
98 |
-
# print(f"Error loading YOLOv7 model: {e}")
|
99 |
-
# traceback.print_exc()
|
100 |
-
# Not raising here to allow app to run if only MoveNet is used. Error will be caught if YOLOv7 is selected.
|
101 |
-
|
102 |
-
# YOLOv7 pose model expects 17 keypoints
|
103 |
-
# kpt_shape = (17, 3)
|
104 |
-
|
105 |
# Load CNN model for bodybuilding pose classification
|
106 |
cnn_model_path = 'external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5'
|
107 |
cnn_model = load_model(cnn_model_path)
|
@@ -109,31 +100,34 @@ cnn_class_labels = ['side_chest', 'front_double_biceps', 'back_double_biceps', '
|
|
109 |
|
110 |
def predict_pose_cnn(img_path):
|
111 |
try:
|
|
|
112 |
if gpus:
|
113 |
-
|
114 |
with tf.device('/GPU:0'):
|
115 |
img = image.load_img(img_path, target_size=(150, 150))
|
116 |
img_array = image.img_to_array(img)
|
117 |
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
118 |
-
predictions = cnn_model.predict(img_array)
|
119 |
predicted_class = np.argmax(predictions, axis=1)
|
120 |
confidence = float(np.max(predictions))
|
121 |
else:
|
122 |
-
|
123 |
with tf.device('/CPU:0'):
|
124 |
img = image.load_img(img_path, target_size=(150, 150))
|
125 |
img_array = image.img_to_array(img)
|
126 |
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
127 |
-
predictions = cnn_model.predict(img_array)
|
128 |
predicted_class = np.argmax(predictions, axis=1)
|
129 |
confidence = float(np.max(predictions))
|
130 |
|
131 |
-
|
132 |
return cnn_class_labels[predicted_class[0]], confidence
|
133 |
except Exception as e:
|
134 |
-
|
135 |
traceback.print_exc()
|
136 |
raise
|
|
|
|
|
137 |
|
138 |
@app.route('/static/uploads/<path:filename>')
|
139 |
def serve_video(filename):
|
@@ -150,88 +144,6 @@ def after_request(response):
|
|
150 |
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
|
151 |
return response
|
152 |
|
153 |
-
# def process_video_yolov7(video_path): # Renamed from process_video
|
154 |
-
# global yolo_model, imgsz, stride # Ensure global model is used
|
155 |
-
# if yolo_model is None:
|
156 |
-
# raise RuntimeError("YOLOv7 model failed to load. Cannot process video.")
|
157 |
-
# try:
|
158 |
-
# if not os.path.exists(video_path):
|
159 |
-
# raise FileNotFoundError(f"Video file not found: {video_path}")
|
160 |
-
#
|
161 |
-
# cap = cv2.VideoCapture(video_path)
|
162 |
-
# if not cap.isOpened():
|
163 |
-
# raise ValueError(f"Failed to open video file: {video_path}")
|
164 |
-
#
|
165 |
-
# fps = int(cap.get(cv2.CAP_PROP_FPS))
|
166 |
-
# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
167 |
-
# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
168 |
-
#
|
169 |
-
# print(f"Processing video: {width}x{height} @ {fps}fps")
|
170 |
-
#
|
171 |
-
# # Create output video writer
|
172 |
-
# output_path = os.path.join(app.config['UPLOAD_FOLDER'], 'output.mp4')
|
173 |
-
# fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
174 |
-
# out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
175 |
-
#
|
176 |
-
# frame_count = 0
|
177 |
-
# while cap.isOpened():
|
178 |
-
# ret, frame = cap.read()
|
179 |
-
# if not ret:
|
180 |
-
# break
|
181 |
-
#
|
182 |
-
# frame_count += 1
|
183 |
-
# print(f"Processing frame {frame_count}")
|
184 |
-
#
|
185 |
-
# # Prepare image
|
186 |
-
# img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
187 |
-
# img = cv2.resize(img, (imgsz, imgsz))
|
188 |
-
# img = img.transpose((2, 0, 1)) # HWC to CHW
|
189 |
-
# img = np.ascontiguousarray(img)
|
190 |
-
# img = torch.from_numpy(img).to(device)
|
191 |
-
# img = img.float() / 255.0
|
192 |
-
# if img.ndimension() == 3:
|
193 |
-
# img = img.unsqueeze(0)
|
194 |
-
#
|
195 |
-
# # Inference
|
196 |
-
# with torch.no_grad():
|
197 |
-
# pred = yolo_model(img)[0] # Use yolo_model
|
198 |
-
# pred = non_max_suppression_kpt(pred, conf_thres=0.25, iou_thres=0.45, nc=yolo_model.yaml['nc'], kpt_label=True)
|
199 |
-
#
|
200 |
-
# # Draw results
|
201 |
-
# output_frame = frame.copy()
|
202 |
-
# poses_detected = False
|
203 |
-
# for det in pred:
|
204 |
-
# if len(det):
|
205 |
-
# poses_detected = True
|
206 |
-
# det[:, :4] = scale_coords(img.shape[2:], det[:, :4], frame.shape).round()
|
207 |
-
# for row in det:
|
208 |
-
# xyxy = row[:4]
|
209 |
-
# conf = row[4]
|
210 |
-
# cls = row[5]
|
211 |
-
# kpts = row[6:]
|
212 |
-
# kpts = torch.tensor(kpts).view(kpt_shape)
|
213 |
-
# output_frame = plot_skeleton_kpts(output_frame, kpts, steps=3, orig_shape=output_frame.shape[:2])
|
214 |
-
#
|
215 |
-
# if not poses_detected:
|
216 |
-
# print(f"No poses detected in frame {frame_count}")
|
217 |
-
#
|
218 |
-
# out.write(output_frame)
|
219 |
-
#
|
220 |
-
# cap.release()
|
221 |
-
# out.release()
|
222 |
-
#
|
223 |
-
# if frame_count == 0:
|
224 |
-
# raise ValueError("No frames were processed from the video")
|
225 |
-
#
|
226 |
-
# print(f"Video processing completed. Processed {frame_count} frames")
|
227 |
-
# # Return URL for the client, using the 'serve_video' endpoint
|
228 |
-
# output_filename = 'output.mp4'
|
229 |
-
# return url_for('serve_video', filename=output_filename, _external=False)
|
230 |
-
# except Exception as e:
|
231 |
-
# print('Error in process_video:', e)
|
232 |
-
# traceback.print_exc()
|
233 |
-
# raise
|
234 |
-
|
235 |
def process_video_movenet(video_path):
|
236 |
try:
|
237 |
print("[DEBUG] Starting MoveNet video processing")
|
@@ -328,7 +240,8 @@ def process_video_movenet(video_path):
|
|
328 |
|
329 |
def process_video_mediapipe(video_path):
|
330 |
try:
|
331 |
-
|
|
|
332 |
if not os.path.exists(video_path):
|
333 |
raise FileNotFoundError(f"Video file not found: {video_path}")
|
334 |
|
@@ -365,7 +278,8 @@ def process_video_mediapipe(video_path):
|
|
365 |
break
|
366 |
frame_count += 1
|
367 |
if frame_count % 30 == 0:
|
368 |
-
|
|
|
369 |
|
370 |
# Process frame with MediaPipe
|
371 |
processed_frame, current_analysis_results, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks)
|
@@ -379,14 +293,14 @@ def process_video_mediapipe(video_path):
|
|
379 |
cv2.imwrite(temp_img_path, frame)
|
380 |
try:
|
381 |
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
|
382 |
-
|
383 |
if cnn_conf >= 0.3:
|
384 |
current_pose = cnn_pose_pred # Update current_pose to be displayed
|
385 |
except Exception as e:
|
386 |
-
|
387 |
finally:
|
388 |
-
|
389 |
-
|
390 |
|
391 |
# Create side panel
|
392 |
panel = np.zeros((height, panel_width, 3), dtype=np.uint8)
|
@@ -395,33 +309,29 @@ def process_video_mediapipe(video_path):
|
|
395 |
current_font = cv2.FONT_HERSHEY_DUPLEX
|
396 |
|
397 |
# Base font scale and reference video height for scaling
|
398 |
-
# Adjust base_font_scale_at_ref_height if text is generally too large or too small
|
399 |
base_font_scale_at_ref_height = 0.6
|
400 |
-
reference_height_for_font_scale = 640.0
|
401 |
|
402 |
# Calculate dynamic font_scale
|
403 |
font_scale = (height / reference_height_for_font_scale) * base_font_scale_at_ref_height
|
404 |
-
# Clamp font_scale to a min/max range to avoid extremes
|
405 |
font_scale = max(0.4, min(font_scale, 1.2))
|
406 |
|
407 |
# Calculate dynamic thickness
|
408 |
thickness = 1 if font_scale < 0.7 else 2
|
409 |
|
410 |
-
# Calculate dynamic line_height
|
411 |
-
# Using a sample string like "Ag" which has ascenders and descenders
|
412 |
(_, text_actual_height), _ = cv2.getTextSize("Ag", current_font, font_scale, thickness)
|
413 |
-
line_spacing_factor = 1.8
|
414 |
line_height = int(text_actual_height * line_spacing_factor)
|
415 |
-
line_height = max(line_height, 15)
|
416 |
|
417 |
-
# Initial y_offset
|
418 |
-
y_offset_panel = max(line_height, 20)
|
419 |
-
# --- End of Dynamic Text Parameter Calculations ---
|
420 |
|
421 |
cv2.putText(panel, "Model: Gladiator SupaDot", (10, y_offset_panel), current_font, font_scale, (0, 255, 255), thickness, lineType=cv2.LINE_AA)
|
422 |
y_offset_panel += line_height
|
423 |
-
if frame_count % 30 == 0:
|
424 |
-
|
425 |
cv2.putText(panel, f"Pose: {current_pose}", (10, y_offset_panel), current_font, font_scale, (255, 0, 0), thickness, lineType=cv2.LINE_AA)
|
426 |
y_offset_panel += int(line_height * 1.5)
|
427 |
|
@@ -441,10 +351,9 @@ def process_video_mediapipe(video_path):
|
|
441 |
cv2.putText(panel, f"• {correction}", (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
|
442 |
y_offset_panel += line_height
|
443 |
|
444 |
-
# Display notes if any
|
445 |
if analysis_results.get('notes'):
|
446 |
y_offset_panel += line_height
|
447 |
-
cv2.putText(panel, "Notes:", (10, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
|
448 |
y_offset_panel += line_height
|
449 |
for note in analysis_results.get('notes', []):
|
450 |
cv2.putText(panel, f"• {note}", (20, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
|
@@ -454,19 +363,22 @@ def process_video_mediapipe(video_path):
|
|
454 |
y_offset_panel += line_height
|
455 |
cv2.putText(panel, analysis_results.get('error', 'Unknown error'), (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
|
456 |
|
457 |
-
combined_frame = np.hstack((processed_frame, panel))
|
458 |
out.write(combined_frame)
|
459 |
|
460 |
cap.release()
|
461 |
out.release()
|
|
|
462 |
if frame_count == 0:
|
463 |
raise ValueError("No frames were processed from the video by MediaPipe")
|
464 |
-
|
465 |
return url_for('serve_video', filename=output_filename, _external=False)
|
466 |
except Exception as e:
|
467 |
-
|
468 |
traceback.print_exc()
|
469 |
raise
|
|
|
|
|
470 |
|
471 |
@app.route('/')
|
472 |
def index():
|
@@ -475,55 +387,56 @@ def index():
|
|
475 |
@app.route('/upload', methods=['POST'])
|
476 |
def upload_file():
|
477 |
try:
|
|
|
478 |
if 'video' not in request.files:
|
479 |
-
|
480 |
return jsonify({'error': 'No video file provided'}), 400
|
481 |
|
482 |
file = request.files['video']
|
483 |
if file.filename == '':
|
484 |
-
|
485 |
return jsonify({'error': 'No selected file'}), 400
|
486 |
|
487 |
if file:
|
488 |
allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'}
|
489 |
if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
|
490 |
-
|
491 |
return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400
|
492 |
|
493 |
# Ensure the filename is properly sanitized
|
494 |
filename = secure_filename(file.filename)
|
495 |
-
|
496 |
-
|
497 |
|
498 |
# Create a unique filename to prevent conflicts
|
499 |
base, ext = os.path.splitext(filename)
|
500 |
unique_filename = f"{base}_{int(time.time())}{ext}"
|
501 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
|
502 |
|
503 |
-
|
504 |
file.save(filepath)
|
505 |
|
506 |
if not os.path.exists(filepath):
|
507 |
-
|
508 |
return jsonify({'error': 'Failed to save uploaded file'}), 500
|
509 |
|
510 |
-
|
511 |
|
512 |
try:
|
513 |
model_choice = request.form.get('model_choice', 'Gladiator SupaDot')
|
514 |
-
|
515 |
|
516 |
if model_choice == 'movenet':
|
517 |
movenet_variant = request.form.get('movenet_variant', 'lightning')
|
518 |
-
|
519 |
output_path_url = process_video_movenet(filepath)
|
520 |
else:
|
521 |
output_path_url = process_video_mediapipe(filepath)
|
522 |
|
523 |
-
|
524 |
|
525 |
if not os.path.exists(os.path.join(app.config['UPLOAD_FOLDER'], os.path.basename(output_path_url))):
|
526 |
-
|
527 |
return jsonify({'error': 'Output video file not found'}), 500
|
528 |
|
529 |
return jsonify({
|
@@ -532,22 +445,37 @@ def upload_file():
|
|
532 |
})
|
533 |
|
534 |
except Exception as e:
|
535 |
-
|
536 |
traceback.print_exc()
|
537 |
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
|
538 |
|
539 |
finally:
|
540 |
try:
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
except Exception as e:
|
545 |
-
|
546 |
|
547 |
except Exception as e:
|
548 |
-
|
549 |
traceback.print_exc()
|
550 |
return jsonify({'error': 'Internal server error'}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
|
552 |
if __name__ == '__main__':
|
553 |
# Ensure the port is 7860 and debug is False for HF Spaces deployment
|
|
|
12 |
from tensorflow.keras.preprocessing import image
|
13 |
import time
|
14 |
import tensorflow_hub as hub
|
15 |
+
import gc
|
16 |
+
import psutil
|
17 |
+
import logging
|
18 |
|
19 |
# Check GPU availability
|
20 |
print("[GPU] Checking GPU availability...")
|
|
|
35 |
from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer
|
36 |
from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer
|
37 |
|
38 |
+
# Configure logging
|
39 |
+
logging.basicConfig(level=logging.INFO)
|
40 |
+
logger = logging.getLogger(__name__)
|
41 |
|
42 |
+
def log_memory_usage():
|
43 |
+
"""Log current memory usage."""
|
44 |
+
process = psutil.Process()
|
45 |
+
memory_info = process.memory_info()
|
46 |
+
logger.info(f"Memory usage: {memory_info.rss / 1024 / 1024:.2f} MB")
|
47 |
+
|
48 |
+
def cleanup_memory():
|
49 |
+
"""Force garbage collection and log memory usage."""
|
50 |
+
gc.collect()
|
51 |
+
log_memory_usage()
|
52 |
|
53 |
def wrap_text(text: str, font_face: int, font_scale: float, thickness: int, max_width: int) -> list[str]:
|
54 |
"""Wrap text to fit within max_width."""
|
|
|
93 |
# Ensure upload directory exists
|
94 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
# Load CNN model for bodybuilding pose classification
|
97 |
cnn_model_path = 'external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5'
|
98 |
cnn_model = load_model(cnn_model_path)
|
|
|
100 |
|
101 |
def predict_pose_cnn(img_path):
|
102 |
try:
|
103 |
+
cleanup_memory() # Clean up before prediction
|
104 |
if gpus:
|
105 |
+
logger.info("[CNN_DEBUG] Using GPU for CNN prediction")
|
106 |
with tf.device('/GPU:0'):
|
107 |
img = image.load_img(img_path, target_size=(150, 150))
|
108 |
img_array = image.img_to_array(img)
|
109 |
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
110 |
+
predictions = cnn_model.predict(img_array, verbose=0) # Disable progress bar
|
111 |
predicted_class = np.argmax(predictions, axis=1)
|
112 |
confidence = float(np.max(predictions))
|
113 |
else:
|
114 |
+
logger.info("[CNN_DEBUG] No GPU found, using CPU for CNN prediction")
|
115 |
with tf.device('/CPU:0'):
|
116 |
img = image.load_img(img_path, target_size=(150, 150))
|
117 |
img_array = image.img_to_array(img)
|
118 |
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
119 |
+
predictions = cnn_model.predict(img_array, verbose=0) # Disable progress bar
|
120 |
predicted_class = np.argmax(predictions, axis=1)
|
121 |
confidence = float(np.max(predictions))
|
122 |
|
123 |
+
logger.info(f"[CNN_DEBUG] Prediction successful: {cnn_class_labels[predicted_class[0]]}")
|
124 |
return cnn_class_labels[predicted_class[0]], confidence
|
125 |
except Exception as e:
|
126 |
+
logger.error(f"[CNN_ERROR] Exception during CNN prediction: {e}")
|
127 |
traceback.print_exc()
|
128 |
raise
|
129 |
+
finally:
|
130 |
+
cleanup_memory() # Clean up after prediction
|
131 |
|
132 |
@app.route('/static/uploads/<path:filename>')
|
133 |
def serve_video(filename):
|
|
|
144 |
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
|
145 |
return response
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
def process_video_movenet(video_path):
|
148 |
try:
|
149 |
print("[DEBUG] Starting MoveNet video processing")
|
|
|
240 |
|
241 |
def process_video_mediapipe(video_path):
|
242 |
try:
|
243 |
+
cleanup_memory() # Clean up before processing
|
244 |
+
logger.info(f"[PROCESS_VIDEO_MEDIAPIPE] Called with video_path: {video_path}")
|
245 |
if not os.path.exists(video_path):
|
246 |
raise FileNotFoundError(f"Video file not found: {video_path}")
|
247 |
|
|
|
278 |
break
|
279 |
frame_count += 1
|
280 |
if frame_count % 30 == 0:
|
281 |
+
logger.info(f"Processing frame {frame_count}")
|
282 |
+
cleanup_memory() # Clean up periodically
|
283 |
|
284 |
# Process frame with MediaPipe
|
285 |
processed_frame, current_analysis_results, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks)
|
|
|
293 |
cv2.imwrite(temp_img_path, frame)
|
294 |
try:
|
295 |
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
|
296 |
+
logger.info(f"[CNN] Frame {frame_count}: Pose: {cnn_pose_pred}, Conf: {cnn_conf:.2f}")
|
297 |
if cnn_conf >= 0.3:
|
298 |
current_pose = cnn_pose_pred # Update current_pose to be displayed
|
299 |
except Exception as e:
|
300 |
+
logger.error(f"[CNN] Error predicting pose on frame {frame_count}: {e}")
|
301 |
finally:
|
302 |
+
if os.path.exists(temp_img_path):
|
303 |
+
os.remove(temp_img_path)
|
304 |
|
305 |
# Create side panel
|
306 |
panel = np.zeros((height, panel_width, 3), dtype=np.uint8)
|
|
|
309 |
current_font = cv2.FONT_HERSHEY_DUPLEX
|
310 |
|
311 |
# Base font scale and reference video height for scaling
|
|
|
312 |
base_font_scale_at_ref_height = 0.6
|
313 |
+
reference_height_for_font_scale = 640.0
|
314 |
|
315 |
# Calculate dynamic font_scale
|
316 |
font_scale = (height / reference_height_for_font_scale) * base_font_scale_at_ref_height
|
|
|
317 |
font_scale = max(0.4, min(font_scale, 1.2))
|
318 |
|
319 |
# Calculate dynamic thickness
|
320 |
thickness = 1 if font_scale < 0.7 else 2
|
321 |
|
322 |
+
# Calculate dynamic line_height
|
|
|
323 |
(_, text_actual_height), _ = cv2.getTextSize("Ag", current_font, font_scale, thickness)
|
324 |
+
line_spacing_factor = 1.8
|
325 |
line_height = int(text_actual_height * line_spacing_factor)
|
326 |
+
line_height = max(line_height, 15)
|
327 |
|
328 |
+
# Initial y_offset
|
329 |
+
y_offset_panel = max(line_height, 20)
|
|
|
330 |
|
331 |
cv2.putText(panel, "Model: Gladiator SupaDot", (10, y_offset_panel), current_font, font_scale, (0, 255, 255), thickness, lineType=cv2.LINE_AA)
|
332 |
y_offset_panel += line_height
|
333 |
+
if frame_count % 30 == 0:
|
334 |
+
logger.info(f"[MEDIAPIPE_PANEL] Frame {frame_count} - Current Pose for Panel: {current_pose}")
|
335 |
cv2.putText(panel, f"Pose: {current_pose}", (10, y_offset_panel), current_font, font_scale, (255, 0, 0), thickness, lineType=cv2.LINE_AA)
|
336 |
y_offset_panel += int(line_height * 1.5)
|
337 |
|
|
|
351 |
cv2.putText(panel, f"• {correction}", (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
|
352 |
y_offset_panel += line_height
|
353 |
|
|
|
354 |
if analysis_results.get('notes'):
|
355 |
y_offset_panel += line_height
|
356 |
+
cv2.putText(panel, "Notes:", (10, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
|
357 |
y_offset_panel += line_height
|
358 |
for note in analysis_results.get('notes', []):
|
359 |
cv2.putText(panel, f"• {note}", (20, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
|
|
|
363 |
y_offset_panel += line_height
|
364 |
cv2.putText(panel, analysis_results.get('error', 'Unknown error'), (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
|
365 |
|
366 |
+
combined_frame = np.hstack((processed_frame, panel))
|
367 |
out.write(combined_frame)
|
368 |
|
369 |
cap.release()
|
370 |
out.release()
|
371 |
+
cleanup_memory() # Clean up after processing
|
372 |
if frame_count == 0:
|
373 |
raise ValueError("No frames were processed from the video by MediaPipe")
|
374 |
+
logger.info(f"MediaPipe video processing completed. Processed {frame_count} frames. Output: {output_path}")
|
375 |
return url_for('serve_video', filename=output_filename, _external=False)
|
376 |
except Exception as e:
|
377 |
+
logger.error(f'Error in process_video_mediapipe: {e}')
|
378 |
traceback.print_exc()
|
379 |
raise
|
380 |
+
finally:
|
381 |
+
cleanup_memory() # Clean up in case of error
|
382 |
|
383 |
@app.route('/')
|
384 |
def index():
|
|
|
387 |
@app.route('/upload', methods=['POST'])
|
388 |
def upload_file():
|
389 |
try:
|
390 |
+
cleanup_memory() # Clean up before processing
|
391 |
if 'video' not in request.files:
|
392 |
+
logger.error("[UPLOAD] No video file in request")
|
393 |
return jsonify({'error': 'No video file provided'}), 400
|
394 |
|
395 |
file = request.files['video']
|
396 |
if file.filename == '':
|
397 |
+
logger.error("[UPLOAD] Empty filename")
|
398 |
return jsonify({'error': 'No selected file'}), 400
|
399 |
|
400 |
if file:
|
401 |
allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'}
|
402 |
if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
|
403 |
+
logger.error(f"[UPLOAD] Invalid file format: {file.filename}")
|
404 |
return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400
|
405 |
|
406 |
# Ensure the filename is properly sanitized
|
407 |
filename = secure_filename(file.filename)
|
408 |
+
logger.info(f"[UPLOAD] Original filename: {file.filename}")
|
409 |
+
logger.info(f"[UPLOAD] Sanitized filename: {filename}")
|
410 |
|
411 |
# Create a unique filename to prevent conflicts
|
412 |
base, ext = os.path.splitext(filename)
|
413 |
unique_filename = f"{base}_{int(time.time())}{ext}"
|
414 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
|
415 |
|
416 |
+
logger.info(f"[UPLOAD] Saving file to: {filepath}")
|
417 |
file.save(filepath)
|
418 |
|
419 |
if not os.path.exists(filepath):
|
420 |
+
logger.error(f"[UPLOAD] File not found after save: {filepath}")
|
421 |
return jsonify({'error': 'Failed to save uploaded file'}), 500
|
422 |
|
423 |
+
logger.info(f"[UPLOAD] File saved successfully. Size: {os.path.getsize(filepath)} bytes")
|
424 |
|
425 |
try:
|
426 |
model_choice = request.form.get('model_choice', 'Gladiator SupaDot')
|
427 |
+
logger.info(f"[UPLOAD] Processing with model: {model_choice}")
|
428 |
|
429 |
if model_choice == 'movenet':
|
430 |
movenet_variant = request.form.get('movenet_variant', 'lightning')
|
431 |
+
logger.info(f"[UPLOAD] Using MoveNet variant: {movenet_variant}")
|
432 |
output_path_url = process_video_movenet(filepath)
|
433 |
else:
|
434 |
output_path_url = process_video_mediapipe(filepath)
|
435 |
|
436 |
+
logger.info(f"[UPLOAD] Processing complete. Output URL: {output_path_url}")
|
437 |
|
438 |
if not os.path.exists(os.path.join(app.config['UPLOAD_FOLDER'], os.path.basename(output_path_url))):
|
439 |
+
logger.error(f"[UPLOAD] Output file not found: {output_path_url}")
|
440 |
return jsonify({'error': 'Output video file not found'}), 500
|
441 |
|
442 |
return jsonify({
|
|
|
445 |
})
|
446 |
|
447 |
except Exception as e:
|
448 |
+
logger.error(f"[UPLOAD] Error processing video: {str(e)}")
|
449 |
traceback.print_exc()
|
450 |
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
|
451 |
|
452 |
finally:
|
453 |
try:
|
454 |
+
if os.path.exists(filepath):
|
455 |
+
os.remove(filepath)
|
456 |
+
logger.info(f"[UPLOAD] Cleaned up input file: {filepath}")
|
457 |
except Exception as e:
|
458 |
+
logger.error(f"[UPLOAD] Error cleaning up file: {str(e)}")
|
459 |
|
460 |
except Exception as e:
|
461 |
+
logger.error(f"[UPLOAD] Unexpected error: {str(e)}")
|
462 |
traceback.print_exc()
|
463 |
return jsonify({'error': 'Internal server error'}), 500
|
464 |
+
finally:
|
465 |
+
cleanup_memory() # Clean up after processing
|
466 |
+
|
467 |
+
# Add error handlers
|
468 |
+
@app.errorhandler(413)
|
469 |
+
def request_entity_too_large(error):
|
470 |
+
return jsonify({'error': 'File too large. Maximum size is 100MB'}), 413
|
471 |
+
|
472 |
+
@app.errorhandler(500)
|
473 |
+
def internal_server_error(error):
|
474 |
+
return jsonify({'error': 'Internal server error. Please try again later.'}), 500
|
475 |
+
|
476 |
+
@app.errorhandler(404)
|
477 |
+
def not_found_error(error):
|
478 |
+
return jsonify({'error': 'Resource not found'}), 404
|
479 |
|
480 |
if __name__ == '__main__':
|
481 |
# Ensure the port is 7860 and debug is False for HF Spaces deployment
|
requirements.txt
CHANGED
@@ -78,3 +78,4 @@ tzdata==2025.2
|
|
78 |
urllib3==2.4.0
|
79 |
Werkzeug==3.1.3
|
80 |
wrapt==1.17.2
|
|
|
|
78 |
urllib3==2.4.0
|
79 |
Werkzeug==3.1.3
|
80 |
wrapt==1.17.2
|
81 |
+
psutil==5.9.8
|