Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,103 Bytes
143badf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
"""
FastAPI Endpoint for GASM-LLM Integration
This module provides a FastAPI endpoint that can be used with OpenAI's CustomGPT
to access GASM-enhanced language processing capabilities.
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from typing import Dict, List, Optional, Any, Union
import torch
import logging
import asyncio
from datetime import datetime
import json
import os
from contextlib import asynccontextmanager
from gasm_llm_layer import GASMEnhancedLLM, GASMTokenEmbedding
from gasm.utils import check_se3_invariance
from gasm.core import GASM
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global model instance
model_instance = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""
Lifespan manager for FastAPI app
"""
global model_instance
# Startup
logger.info("Loading GASM-LLM model...")
try:
model_instance = GASMEnhancedLLM(
base_model_name="distilbert-base-uncased",
gasm_hidden_dim=256,
gasm_output_dim=128,
enable_geometry=True
)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model: {e}")
model_instance = None
yield
# Shutdown
logger.info("Shutting down...")
model_instance = None
# Create FastAPI app
app = FastAPI(
title="GASM-LLM API",
description="API for GASM-enhanced Large Language Model processing",
version="1.0.0",
lifespan=lifespan
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Pydantic models for request/response
class TextProcessingRequest(BaseModel):
"""Request model for text processing"""
text: str = Field(..., description="Text to process", min_length=1, max_length=10000)
enable_geometry: bool = Field(True, description="Enable geometric processing")
return_embeddings: bool = Field(False, description="Return raw embeddings")
return_geometry: bool = Field(False, description="Return geometric information")
max_length: int = Field(512, description="Maximum sequence length", ge=1, le=2048)
model_config: Optional[Dict[str, Any]] = Field(None, description="Model configuration overrides")
class GeometricAnalysisRequest(BaseModel):
"""Request model for geometric analysis"""
text: str = Field(..., description="Text to analyze geometrically")
analysis_type: str = Field("full", description="Type of analysis: 'full', 'curvature', 'invariance'")
num_invariance_tests: int = Field(10, description="Number of invariance tests", ge=1, le=100)
tolerance: float = Field(1e-3, description="Tolerance for invariance tests", ge=1e-6, le=1e-1)
class ComparisonRequest(BaseModel):
"""Request model for comparing geometric vs standard processing"""
text: str = Field(..., description="Text to compare")
metrics: List[str] = Field(["embedding_norm", "attention_patterns", "geometric_consistency"],
description="Metrics to compare")
class BatchProcessingRequest(BaseModel):
"""Request model for batch processing"""
texts: List[str] = Field(..., description="List of texts to process", min_items=1, max_items=100)
enable_geometry: bool = Field(True, description="Enable geometric processing")
return_summary: bool = Field(True, description="Return summary statistics")
class TextProcessingResponse(BaseModel):
"""Response model for text processing"""
success: bool
timestamp: str
processing_time: float
text_length: int
model_info: Dict[str, Any]
embedding_stats: Dict[str, float]
geometric_stats: Optional[Dict[str, Any]] = None
embeddings: Optional[List[List[float]]] = None
geometric_info: Optional[Dict[str, Any]] = None
error: Optional[str] = None
class GeometricAnalysisResponse(BaseModel):
"""Response model for geometric analysis"""
success: bool
timestamp: str
analysis_type: str
curvature_analysis: Optional[Dict[str, Any]] = None
invariance_results: Optional[Dict[str, Any]] = None
geometric_properties: Optional[Dict[str, Any]] = None
error: Optional[str] = None
class ComparisonResponse(BaseModel):
"""Response model for comparison"""
success: bool
timestamp: str
geometric_results: Dict[str, Any]
standard_results: Dict[str, Any]
comparison_metrics: Dict[str, Any]
error: Optional[str] = None
class BatchProcessingResponse(BaseModel):
"""Response model for batch processing"""
success: bool
timestamp: str
num_texts: int
processing_times: List[float]
batch_summary: Dict[str, Any]
individual_results: Optional[List[Dict[str, Any]]] = None
error: Optional[str] = None
class HealthResponse(BaseModel):
"""Response model for health check"""
status: str
model_loaded: bool
device: str
memory_usage: Dict[str, Any]
uptime: str
def get_model():
"""
Dependency to get the model instance
"""
global model_instance
if model_instance is None:
raise HTTPException(status_code=503, detail="Model not loaded")
return model_instance
@app.get("/", response_model=Dict[str, str])
async def root():
"""
Root endpoint
"""
return {
"message": "GASM-LLM API",
"version": "1.0.0",
"description": "API for GASM-enhanced Large Language Model processing",
"endpoints": {
"process": "POST /process - Process text with geometric enhancement",
"analyze": "POST /analyze - Perform geometric analysis",
"compare": "POST /compare - Compare geometric vs standard processing",
"batch": "POST /batch - Process multiple texts",
"health": "GET /health - Health check",
"info": "GET /info - Model information"
}
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""
Health check endpoint
"""
global model_instance
# Check memory usage
memory_info = {}
if torch.cuda.is_available():
memory_info["gpu_memory"] = {
"allocated": torch.cuda.memory_allocated(),
"reserved": torch.cuda.memory_reserved(),
"max_allocated": torch.cuda.max_memory_allocated()
}
# Check system memory (simplified)
import psutil
memory_info["system_memory"] = {
"used": psutil.virtual_memory().used,
"total": psutil.virtual_memory().total,
"percent": psutil.virtual_memory().percent
}
return HealthResponse(
status="healthy" if model_instance is not None else "unhealthy",
model_loaded=model_instance is not None,
device=str(torch.device("cuda" if torch.cuda.is_available() else "cpu")),
memory_usage=memory_info,
uptime=datetime.now().isoformat()
)
@app.get("/info", response_model=Dict[str, Any])
async def model_info(model: GASMEnhancedLLM = Depends(get_model)):
"""
Get model information
"""
return {
"model_name": model.base_model_name,
"geometry_enabled": model.enable_geometry,
"device": str(next(model.parameters()).device),
"total_parameters": sum(p.numel() for p in model.parameters()),
"trainable_parameters": sum(p.numel() for p in model.parameters() if p.requires_grad),
"model_size_mb": sum(p.numel() * p.element_size() for p in model.parameters()) / (1024 * 1024),
"gasm_config": {
"hidden_dim": getattr(model.gasm_embedding.gasm, 'hidden_dim', None) if hasattr(model, 'gasm_embedding') else None,
"output_dim": getattr(model.gasm_embedding.gasm, 'output_dim', None) if hasattr(model, 'gasm_embedding') else None,
"max_iterations": getattr(model.gasm_embedding.gasm, 'max_iterations', None) if hasattr(model, 'gasm_embedding') else None,
}
}
@app.post("/process", response_model=TextProcessingResponse)
async def process_text(
request: TextProcessingRequest,
model: GASMEnhancedLLM = Depends(get_model)
):
"""
Process text with GASM-enhanced LLM
"""
start_time = datetime.now()
try:
# Configure model
model.enable_geometry = request.enable_geometry
# Process text
outputs = model.encode_text(
request.text,
return_geometry=request.return_geometry
)
# Calculate processing time
processing_time = (datetime.now() - start_time).total_seconds()
# Extract embeddings
embeddings = outputs['last_hidden_state']
embedding_stats = {
"shape": list(embeddings.shape),
"mean": float(embeddings.mean()),
"std": float(embeddings.std()),
"min": float(embeddings.min()),
"max": float(embeddings.max()),
"norm": float(torch.norm(embeddings))
}
# Prepare response
response = TextProcessingResponse(
success=True,
timestamp=start_time.isoformat(),
processing_time=processing_time,
text_length=len(request.text),
model_info={
"model_name": model.base_model_name,
"geometry_enabled": request.enable_geometry,
"device": str(next(model.parameters()).device)
},
embedding_stats=embedding_stats
)
# Add embeddings if requested
if request.return_embeddings:
response.embeddings = embeddings.detach().cpu().numpy().tolist()
# Add geometric information if available
if request.return_geometry and 'geometric_info' in outputs:
geometric_info = outputs['geometric_info']
if geometric_info:
response.geometric_info = {
"num_sequences": len(geometric_info),
"has_curvature": any('output' in info for info in geometric_info),
"has_constraints": any('constraints' in info for info in geometric_info),
"has_relations": any('relations' in info for info in geometric_info)
}
return response
except Exception as e:
logger.error(f"Error processing text: {e}")
return TextProcessingResponse(
success=False,
timestamp=start_time.isoformat(),
processing_time=(datetime.now() - start_time).total_seconds(),
text_length=len(request.text),
model_info={},
embedding_stats={},
error=str(e)
)
@app.post("/analyze", response_model=GeometricAnalysisResponse)
async def analyze_geometry(
request: GeometricAnalysisRequest,
model: GASMEnhancedLLM = Depends(get_model)
):
"""
Perform geometric analysis of text
"""
start_time = datetime.now()
try:
# Enable geometry for analysis
model.enable_geometry = True
# Process text with geometric information
outputs = model.encode_text(request.text, return_geometry=True)
response = GeometricAnalysisResponse(
success=True,
timestamp=start_time.isoformat(),
analysis_type=request.analysis_type
)
# Perform requested analysis
if request.analysis_type in ["full", "curvature"]:
# Curvature analysis
geometric_info = outputs.get('geometric_info', [])
if geometric_info:
curvature_stats = []
for info in geometric_info:
if 'output' in info:
geo_output = info['output']
curvature_norm = torch.norm(geo_output, dim=1)
curvature_stats.append({
"mean": float(curvature_norm.mean()),
"std": float(curvature_norm.std()),
"min": float(curvature_norm.min()),
"max": float(curvature_norm.max())
})
response.curvature_analysis = {
"per_sequence": curvature_stats,
"global_stats": {
"num_sequences": len(curvature_stats),
"avg_mean_curvature": sum(s["mean"] for s in curvature_stats) / len(curvature_stats) if curvature_stats else 0
}
}
if request.analysis_type in ["full", "invariance"]:
# SE(3) invariance analysis
try:
# Create simple test data for invariance check
test_points = torch.randn(10, 3)
test_features = torch.randn(10, model.base_model.config.hidden_size)
test_relations = torch.randn(10, 10, 16)
# Test with simplified model for invariance
gasm_model = GASM(
feature_dim=model.base_model.config.hidden_size,
hidden_dim=256,
output_dim=3
)
is_invariant = check_se3_invariance(
gasm_model,
test_points,
test_features,
test_relations,
num_tests=request.num_invariance_tests,
tolerance=request.tolerance
)
response.invariance_results = {
"is_invariant": is_invariant,
"num_tests": request.num_invariance_tests,
"tolerance": request.tolerance,
"test_type": "SE(3) invariance"
}
except Exception as e:
response.invariance_results = {
"is_invariant": None,
"error": str(e)
}
return response
except Exception as e:
logger.error(f"Error in geometric analysis: {e}")
return GeometricAnalysisResponse(
success=False,
timestamp=start_time.isoformat(),
analysis_type=request.analysis_type,
error=str(e)
)
@app.post("/compare", response_model=ComparisonResponse)
async def compare_processing(
request: ComparisonRequest,
model: GASMEnhancedLLM = Depends(get_model)
):
"""
Compare geometric vs standard processing
"""
start_time = datetime.now()
try:
# Process with geometry
model.enable_geometry = True
geometric_outputs = model.encode_text(request.text, return_geometry=True)
# Process without geometry
model.enable_geometry = False
standard_outputs = model.encode_text(request.text, return_geometry=False)
# Extract results
geometric_embeddings = geometric_outputs['last_hidden_state']
standard_embeddings = standard_outputs['last_hidden_state']
# Calculate comparison metrics
comparison_metrics = {}
if "embedding_norm" in request.metrics:
comparison_metrics["embedding_norm"] = {
"geometric": float(torch.norm(geometric_embeddings)),
"standard": float(torch.norm(standard_embeddings)),
"ratio": float(torch.norm(geometric_embeddings) / torch.norm(standard_embeddings))
}
if "attention_patterns" in request.metrics:
# Simplified attention pattern comparison
geo_attention = torch.softmax(geometric_embeddings @ geometric_embeddings.transpose(-2, -1), dim=-1)
std_attention = torch.softmax(standard_embeddings @ standard_embeddings.transpose(-2, -1), dim=-1)
comparison_metrics["attention_patterns"] = {
"geometric_entropy": float(torch.sum(-geo_attention * torch.log(geo_attention + 1e-9))),
"standard_entropy": float(torch.sum(-std_attention * torch.log(std_attention + 1e-9))),
"pattern_difference": float(torch.norm(geo_attention - std_attention))
}
if "geometric_consistency" in request.metrics:
comparison_metrics["geometric_consistency"] = {
"has_geometric_info": 'geometric_info' in geometric_outputs,
"embedding_difference": float(torch.norm(geometric_embeddings - standard_embeddings)),
"relative_change": float(torch.norm(geometric_embeddings - standard_embeddings) / torch.norm(standard_embeddings))
}
return ComparisonResponse(
success=True,
timestamp=start_time.isoformat(),
geometric_results={
"embedding_stats": {
"shape": list(geometric_embeddings.shape),
"mean": float(geometric_embeddings.mean()),
"std": float(geometric_embeddings.std()),
"norm": float(torch.norm(geometric_embeddings))
}
},
standard_results={
"embedding_stats": {
"shape": list(standard_embeddings.shape),
"mean": float(standard_embeddings.mean()),
"std": float(standard_embeddings.std()),
"norm": float(torch.norm(standard_embeddings))
}
},
comparison_metrics=comparison_metrics
)
except Exception as e:
logger.error(f"Error in comparison: {e}")
return ComparisonResponse(
success=False,
timestamp=start_time.isoformat(),
geometric_results={},
standard_results={},
comparison_metrics={},
error=str(e)
)
@app.post("/batch", response_model=BatchProcessingResponse)
async def batch_process(
request: BatchProcessingRequest,
model: GASMEnhancedLLM = Depends(get_model)
):
"""
Process multiple texts in batch
"""
start_time = datetime.now()
try:
model.enable_geometry = request.enable_geometry
processing_times = []
individual_results = []
for i, text in enumerate(request.texts):
text_start = datetime.now()
outputs = model.encode_text(text, return_geometry=False)
embeddings = outputs['last_hidden_state']
processing_time = (datetime.now() - text_start).total_seconds()
processing_times.append(processing_time)
if not request.return_summary:
individual_results.append({
"text_index": i,
"text_length": len(text),
"processing_time": processing_time,
"embedding_norm": float(torch.norm(embeddings))
})
# Calculate batch summary
batch_summary = {
"total_texts": len(request.texts),
"total_processing_time": sum(processing_times),
"average_processing_time": sum(processing_times) / len(processing_times),
"texts_per_second": len(request.texts) / sum(processing_times),
"geometry_enabled": request.enable_geometry,
"total_characters": sum(len(text) for text in request.texts),
"average_text_length": sum(len(text) for text in request.texts) / len(request.texts)
}
return BatchProcessingResponse(
success=True,
timestamp=start_time.isoformat(),
num_texts=len(request.texts),
processing_times=processing_times,
batch_summary=batch_summary,
individual_results=individual_results if not request.return_summary else None
)
except Exception as e:
logger.error(f"Error in batch processing: {e}")
return BatchProcessingResponse(
success=False,
timestamp=start_time.isoformat(),
num_texts=len(request.texts),
processing_times=[],
batch_summary={},
error=str(e)
)
# Error handlers
@app.exception_handler(HTTPException)
async def http_exception_handler(request, exc):
return JSONResponse(
status_code=exc.status_code,
content={"error": exc.detail, "timestamp": datetime.now().isoformat()}
)
@app.exception_handler(Exception)
async def general_exception_handler(request, exc):
logger.error(f"Unhandled exception: {exc}")
return JSONResponse(
status_code=500,
content={"error": "Internal server error", "timestamp": datetime.now().isoformat()}
)
# OpenAPI customization for CustomGPT
@app.get("/openapi.json")
async def custom_openapi():
"""
Custom OpenAPI schema for CustomGPT integration
"""
from fastapi.openapi.utils import get_openapi
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title="GASM-LLM API",
version="1.0.0",
description="API for GASM-enhanced Large Language Model processing with geometric inference capabilities",
routes=app.routes,
)
# Add custom metadata for CustomGPT
openapi_schema["info"]["x-logo"] = {
"url": "https://huggingface.co/spaces/your-username/gasm-llm/resolve/main/logo.png"
}
app.openapi_schema = openapi_schema
return app.openapi_schema
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"fastapi_endpoint:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="info"
) |