schoginitoys commited on
Commit
524a3e1
·
verified ·
1 Parent(s): e02f36c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -4
README.md CHANGED
@@ -12,9 +12,15 @@ short_description: Logic Gate Learning with Neural Networks
12
  license: mit
13
  ---
14
 
15
- # Welcome to Streamlit!
16
 
17
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
18
 
19
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
20
- forums](https://discuss.streamlit.io).
 
 
 
 
 
 
 
12
  license: mit
13
  ---
14
 
15
+ # **Embedding Dimension Visualizer**
16
 
17
+ An **Embedding Dimension Visualizer** is an interactive Streamlit tool designed for teaching and experimentation with modern transformer embeddings. It lets you:
18
 
19
+ * **Tokenize** any input text using tiktoken or HuggingFace’s BPE tokenizer, showing each subword token and its ID.
20
+ * **Visualize embeddings** by generating a demo embedding vector for every token.
21
+ * **Compute and display sinusoidal positional encodings** (sin / cos) per token position.
22
+ * **Combine embeddings + positional encodings** and present the final per-token vectors exactly as they’d be fed into attention heads.
23
+ * **Expose theory** via an expandable section—complete with LaTeX formulas—covering tokenization, BPE, and the positional-encoding equations.
24
+ * **Lock sliders** into read-only mode, so learners can observe values without accidentally altering them.
25
+
26
+ This app is ideal for workshops, live demos, or self-study when you want a hands-on, visual understanding of how embeddings and positional information come together inside a transformer model.