schoginitoys commited on
Commit
ecafcf5
·
verified ·
1 Parent(s): 065c983

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -17
README.md CHANGED
@@ -1,20 +1,12 @@
1
- ---
2
- title: Embed And Pos Encode
3
- emoji: 🚀
4
- colorFrom: red
5
- colorTo: red
6
- sdk: docker
7
- app_port: 8501
8
- tags:
9
- - streamlit
10
- pinned: false
11
- short_description: An interactive Streamlit app that visualizes token embedding
12
- license: mit
13
- ---
14
 
15
- # Welcome to Streamlit!
16
 
17
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
 
 
 
 
 
18
 
19
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
20
- forums](https://discuss.streamlit.io).
 
1
+ **App Description**
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ An **Embedding Dimension Visualizer** is an interactive Streamlit tool designed for teaching and experimentation with modern transformer embeddings. It lets you:
4
 
5
+ * **Tokenize** any input text using tiktoken or HuggingFace’s BPE tokenizer, showing each subword token and its ID.
6
+ * **Visualize embeddings** by generating a demo embedding vector for every token.
7
+ * **Compute and display sinusoidal positional encodings** (sin / cos) per token position.
8
+ * **Combine embeddings + positional encodings** and present the final per-token vectors exactly as they’d be fed into attention heads.
9
+ * **Expose theory** via an expandable section—complete with LaTeX formulas—covering tokenization, BPE, and the positional-encoding equations.
10
+ * **Lock sliders** into read-only mode, so learners can observe values without accidentally altering them.
11
 
12
+ This app is ideal for workshops, live demos, or self-study when you want a hands-on, visual understanding of how embeddings and positional information come together inside a transformer model.