Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from huggingface_hub import InferenceClient | |
from duckduckgo_search import DDGS | |
from datasets import load_dataset | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# Hugging Face Token (set in environment) | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
deepseek_model = "deepseek-ai/DeepSeek-R1" | |
hf_client = InferenceClient(model=deepseek_model, token=HF_TOKEN) | |
# Load Wikipedia dataset (small subset for efficient retrieval) | |
wiki_dataset = load_dataset("wikipedia", "20220301.en", split="train[:10000]") | |
def search_wikipedia(question): | |
results = wiki_dataset.filter(lambda x: question.lower() in x["text"].lower()) | |
if len(results): | |
return results[0]["text"][:1000] # limit to first 1000 chars | |
return "No relevant information found on Wikipedia." | |
def duckduckgo_search(query): | |
with DDGS() as ddgs: | |
results = [r["body"] for r in ddgs.text(query, max_results=3)] | |
return "\n".join(results) if results else "No results found." | |
def ask_deepseek(prompt, max_tokens=512): | |
try: | |
response = hf_client.text_generation( | |
prompt, max_new_tokens=max_tokens, temperature=0.2, repetition_penalty=1.1 | |
) | |
return response | |
except Exception as e: | |
return f"DeepSeek Error: {e}" | |
class SmartAgent: | |
def __call__(self, question: str) -> str: | |
q_lower = question.lower() | |
if any(term in q_lower for term in ["current", "latest", "2024", "2025", "recent", "live", "today", "now"]): | |
return duckduckgo_search(question) | |
deepseek_response = ask_deepseek(question) | |
if "DeepSeek Error" not in deepseek_response and deepseek_response.strip(): | |
return deepseek_response | |
# fallback to Wikipedia if DeepSeek fails | |
return search_wikipedia(question) | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
if not profile: | |
return "Please Login to Hugging Face with the button.", None | |
username = profile.username | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
agent_code = f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main" | |
try: | |
agent = SmartAgent() | |
except Exception as e: | |
return f"Agent Error: {e}", None | |
questions_data = requests.get(questions_url).json() | |
results_log, answers_payload = [], [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if task_id and question_text: | |
answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer}) | |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} | |
response = requests.post(submit_url, json=submission_data).json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {response.get('username')}\n" | |
f"Overall Score: {response.get('score', 'N/A')}%\n" | |
f"({response.get('correct_count', '?')}/{response.get('total_attempted', '?')} correct)\n" | |
f"Message: {response.get('message', 'No message received.')}" | |
) | |
return final_status, pd.DataFrame(results_log) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Smart Agent Evaluation Runner") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Answers") | |
run_button.click(run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |