Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,18 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from duckduckgo_search import DDGS
|
7 |
import wikipediaapi
|
|
|
|
|
8 |
|
9 |
# ==== CONFIG ====
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
12 |
|
13 |
CONVERSATIONAL_MODELS = [
|
14 |
"deepseek-ai/DeepSeek-LLM",
|
@@ -18,25 +22,94 @@ CONVERSATIONAL_MODELS = [
|
|
18 |
|
19 |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# ==== SEARCH TOOLS ====
|
22 |
def duckduckgo_search(query):
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def wikipedia_search(query):
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
def
|
32 |
-
last_error =
|
33 |
for model_id in CONVERSATIONAL_MODELS:
|
34 |
try:
|
35 |
hf_client = InferenceClient(model_id, token=HF_TOKEN)
|
36 |
-
# Try conversational
|
37 |
if hasattr(hf_client, "conversational"):
|
38 |
result = hf_client.conversational(
|
39 |
-
messages=[{"role": "user", "content":
|
40 |
max_new_tokens=384,
|
41 |
)
|
42 |
if isinstance(result, dict) and "generated_text" in result:
|
@@ -47,79 +120,97 @@ def hf_chat_model(question):
|
|
47 |
return result
|
48 |
else:
|
49 |
continue
|
50 |
-
|
51 |
-
result = hf_client.text_generation(question, max_new_tokens=384)
|
52 |
if isinstance(result, dict) and "generated_text" in result:
|
53 |
return result["generated_text"]
|
54 |
elif isinstance(result, str):
|
55 |
return result
|
56 |
except Exception as e:
|
57 |
last_error = f"{model_id}: {e}"
|
58 |
-
continue
|
59 |
-
return f"HF LLM error: {last_error or 'All models failed.'}"
|
60 |
-
|
61 |
-
def try_parse_vegetable_list(question):
|
62 |
-
if "vegetable" in question.lower():
|
63 |
-
# Heuristic: find list in question, extract vegetables only
|
64 |
-
import re
|
65 |
-
food_match = re.findall(r"list\s+.*?:\s*([a-zA-Z0-9,\s\-]+)", question)
|
66 |
-
food_str = food_match[0] if food_match else ""
|
67 |
-
foods = [f.strip().lower() for f in food_str.split(",") if f.strip()]
|
68 |
-
# Simple vegtable classifier (expand this list as needed)
|
69 |
-
vegetables = set(["acorns", "broccoli", "celery", "green beans", "lettuce", "peanuts", "sweet potatoes", "zucchini", "corn", "bell pepper"])
|
70 |
-
veg_list = sorted([f for f in foods if f in vegetables])
|
71 |
-
if veg_list:
|
72 |
-
return ", ".join(veg_list)
|
73 |
return None
|
74 |
|
75 |
-
def
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# If your UI supports uploads, read the file, parse food vs. drinks and sum.
|
87 |
-
return "$12562.20"
|
88 |
-
return None
|
89 |
|
90 |
-
def
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# ==== SMART AGENT ====
|
97 |
class SmartAgent:
|
98 |
def __init__(self):
|
99 |
pass
|
100 |
|
101 |
-
def __call__(self, question: str
|
102 |
-
# 1.
|
103 |
-
|
104 |
-
if
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# ==== SUBMISSION LOGIC ====
|
125 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from huggingface_hub import InferenceClient
|
7 |
from duckduckgo_search import DDGS
|
8 |
import wikipediaapi
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
import pdfplumber
|
11 |
|
12 |
# ==== CONFIG ====
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
+
GROK_API_KEY = os.getenv("GROK_API_KEY") or "xai-AyJXz3OAAMuQiOrPzPptUWTmsEyI9vywPpbV19S1nCpXXKWoKLqOoGc61RazPPui2fx4Ekb1durXccqz"
|
16 |
|
17 |
CONVERSATIONAL_MODELS = [
|
18 |
"deepseek-ai/DeepSeek-LLM",
|
|
|
22 |
|
23 |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
|
24 |
|
25 |
+
# ==== UTILITY: Link/file detection ====
|
26 |
+
def extract_links(text):
|
27 |
+
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
|
28 |
+
return url_pattern.findall(text)
|
29 |
+
|
30 |
+
def download_file(url, out_dir="tmp_files"):
|
31 |
+
os.makedirs(out_dir, exist_ok=True)
|
32 |
+
filename = url.split("/")[-1].split("?")[0]
|
33 |
+
local_path = os.path.join(out_dir, filename)
|
34 |
+
try:
|
35 |
+
r = requests.get(url, timeout=20)
|
36 |
+
r.raise_for_status()
|
37 |
+
with open(local_path, "wb") as f:
|
38 |
+
f.write(r.content)
|
39 |
+
return local_path
|
40 |
+
except Exception:
|
41 |
+
return None
|
42 |
+
|
43 |
+
# ==== File/Link Analyzers ====
|
44 |
+
def analyze_file(file_path):
|
45 |
+
if file_path.endswith((".xlsx", ".xls")):
|
46 |
+
try:
|
47 |
+
df = pd.read_excel(file_path)
|
48 |
+
return f"Excel summary: {df.head().to_markdown(index=False)}"
|
49 |
+
except Exception as e:
|
50 |
+
return f"Excel error: {e}"
|
51 |
+
elif file_path.endswith(".csv"):
|
52 |
+
try:
|
53 |
+
df = pd.read_csv(file_path)
|
54 |
+
return f"CSV summary: {df.head().to_markdown(index=False)}"
|
55 |
+
except Exception as e:
|
56 |
+
return f"CSV error: {e}"
|
57 |
+
elif file_path.endswith(".pdf"):
|
58 |
+
try:
|
59 |
+
with pdfplumber.open(file_path) as pdf:
|
60 |
+
first_page = pdf.pages[0].extract_text()
|
61 |
+
return f"PDF text sample: {first_page[:1000]}"
|
62 |
+
except Exception as e:
|
63 |
+
return f"PDF error: {e}"
|
64 |
+
elif file_path.endswith(".txt"):
|
65 |
+
try:
|
66 |
+
with open(file_path, encoding='utf-8') as f:
|
67 |
+
txt = f.read()
|
68 |
+
return f"TXT file sample: {txt[:1000]}"
|
69 |
+
except Exception as e:
|
70 |
+
return f"TXT error: {e}"
|
71 |
+
else:
|
72 |
+
return f"Unsupported file type: {file_path}"
|
73 |
+
|
74 |
+
def analyze_webpage(url):
|
75 |
+
try:
|
76 |
+
r = requests.get(url, timeout=15)
|
77 |
+
soup = BeautifulSoup(r.text, "lxml")
|
78 |
+
title = soup.title.string if soup.title else "No title"
|
79 |
+
paragraphs = [p.get_text() for p in soup.find_all("p")]
|
80 |
+
article_sample = "\n".join(paragraphs[:5])
|
81 |
+
return f"Webpage Title: {title}\nContent sample:\n{article_sample[:1200]}"
|
82 |
+
except Exception as e:
|
83 |
+
return f"Webpage error: {e}"
|
84 |
+
|
85 |
# ==== SEARCH TOOLS ====
|
86 |
def duckduckgo_search(query):
|
87 |
+
try:
|
88 |
+
with DDGS() as ddgs:
|
89 |
+
results = [r for r in ddgs.text(query, max_results=3)]
|
90 |
+
bodies = [r.get("body", "") for r in results if r.get("body")]
|
91 |
+
return "\n".join(bodies) if bodies else None
|
92 |
+
except Exception:
|
93 |
+
return None
|
94 |
|
95 |
def wikipedia_search(query):
|
96 |
+
try:
|
97 |
+
page = wiki_api.page(query)
|
98 |
+
if page.exists() and page.summary:
|
99 |
+
return page.summary
|
100 |
+
except Exception:
|
101 |
+
return None
|
102 |
+
return None
|
103 |
|
104 |
+
def llm_conversational(query):
|
105 |
+
last_error = None
|
106 |
for model_id in CONVERSATIONAL_MODELS:
|
107 |
try:
|
108 |
hf_client = InferenceClient(model_id, token=HF_TOKEN)
|
109 |
+
# Try conversational if available, else fallback to text_generation
|
110 |
if hasattr(hf_client, "conversational"):
|
111 |
result = hf_client.conversational(
|
112 |
+
messages=[{"role": "user", "content": query}],
|
113 |
max_new_tokens=384,
|
114 |
)
|
115 |
if isinstance(result, dict) and "generated_text" in result:
|
|
|
120 |
return result
|
121 |
else:
|
122 |
continue
|
123 |
+
result = hf_client.text_generation(query, max_new_tokens=384)
|
|
|
124 |
if isinstance(result, dict) and "generated_text" in result:
|
125 |
return result["generated_text"]
|
126 |
elif isinstance(result, str):
|
127 |
return result
|
128 |
except Exception as e:
|
129 |
last_error = f"{model_id}: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
return None
|
131 |
|
132 |
+
def is_coding_question(text):
|
133 |
+
# Basic heuristic: mentions code, function, "python", code blocks, etc.
|
134 |
+
code_terms = [
|
135 |
+
"python", "java", "c++", "code", "function", "write a", "script", "algorithm",
|
136 |
+
"bug", "traceback", "error", "output", "compile", "debug"
|
137 |
+
]
|
138 |
+
if any(term in text.lower() for term in code_terms):
|
139 |
+
return True
|
140 |
+
if re.search(r"```.+```", text, re.DOTALL):
|
141 |
+
return True
|
142 |
+
return False
|
|
|
|
|
|
|
143 |
|
144 |
+
def grok_completion(question, system_prompt=None):
|
145 |
+
url = "https://api.x.ai/v1/chat/completions"
|
146 |
+
headers = {
|
147 |
+
"Content-Type": "application/json",
|
148 |
+
"Authorization": f"Bearer {GROK_API_KEY}"
|
149 |
+
}
|
150 |
+
payload = {
|
151 |
+
"messages": [
|
152 |
+
{"role": "system", "content": system_prompt or "You are a helpful coding and research assistant."},
|
153 |
+
{"role": "user", "content": question}
|
154 |
+
],
|
155 |
+
"model": "grok-3-latest",
|
156 |
+
"stream": False,
|
157 |
+
"temperature": 0
|
158 |
+
}
|
159 |
+
try:
|
160 |
+
r = requests.post(url, headers=headers, json=payload, timeout=45)
|
161 |
+
r.raise_for_status()
|
162 |
+
data = r.json()
|
163 |
+
# Extract assistant's reply
|
164 |
+
return data['choices'][0]['message']['content']
|
165 |
+
except Exception as e:
|
166 |
+
return None
|
167 |
|
168 |
# ==== SMART AGENT ====
|
169 |
class SmartAgent:
|
170 |
def __init__(self):
|
171 |
pass
|
172 |
|
173 |
+
def __call__(self, question: str) -> str:
|
174 |
+
# 1. Handle file/link
|
175 |
+
links = extract_links(question)
|
176 |
+
if links:
|
177 |
+
results = []
|
178 |
+
for url in links:
|
179 |
+
if re.search(r"\.xlsx|\.xls|\.csv|\.pdf|\.txt", url):
|
180 |
+
local = download_file(url)
|
181 |
+
if local:
|
182 |
+
file_analysis = analyze_file(local)
|
183 |
+
results.append(f"File ({url}):\n{file_analysis}")
|
184 |
+
else:
|
185 |
+
results.append(analyze_webpage(url))
|
186 |
+
if results:
|
187 |
+
return "\n\n".join(results)
|
188 |
+
|
189 |
+
# 2. Coding or algorithmic problems? Try Grok FIRST
|
190 |
+
if is_coding_question(question):
|
191 |
+
grok_response = grok_completion(question)
|
192 |
+
if grok_response:
|
193 |
+
return f"[Grok] {grok_response}"
|
194 |
+
|
195 |
+
# 3. DuckDuckGo for web knowledge
|
196 |
+
result = duckduckgo_search(question)
|
197 |
+
if result:
|
198 |
+
return result
|
199 |
+
# 4. Wikipedia for encyclopedic queries
|
200 |
+
result = wikipedia_search(question)
|
201 |
+
if result:
|
202 |
+
return result
|
203 |
+
# 5. Grok again for hard/reasoning/general (if not already tried)
|
204 |
+
if not is_coding_question(question):
|
205 |
+
grok_response = grok_completion(question)
|
206 |
+
if grok_response:
|
207 |
+
return f"[Grok] {grok_response}"
|
208 |
+
|
209 |
+
# 6. Fallback to LLM conversational
|
210 |
+
result = llm_conversational(question)
|
211 |
+
if result:
|
212 |
+
return result
|
213 |
+
return "No answer could be found by available tools."
|
214 |
|
215 |
# ==== SUBMISSION LOGIC ====
|
216 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|