schoolkithub commited on
Commit
043cb3a
·
verified ·
1 Parent(s): 6aeb085

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -67
app.py CHANGED
@@ -1,14 +1,18 @@
1
  import os
 
2
  import gradio as gr
3
  import requests
4
  import pandas as pd
5
  from huggingface_hub import InferenceClient
6
  from duckduckgo_search import DDGS
7
  import wikipediaapi
 
 
8
 
9
  # ==== CONFIG ====
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
  HF_TOKEN = os.getenv("HF_TOKEN")
 
12
 
13
  CONVERSATIONAL_MODELS = [
14
  "deepseek-ai/DeepSeek-LLM",
@@ -18,25 +22,94 @@ CONVERSATIONAL_MODELS = [
18
 
19
  wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  # ==== SEARCH TOOLS ====
22
  def duckduckgo_search(query):
23
- with DDGS() as ddgs:
24
- results = [r for r in ddgs.text(query, max_results=3)]
25
- return "\n".join([r.get("body", "") for r in results if r.get("body")]) or "No DuckDuckGo results found."
 
 
 
 
26
 
27
  def wikipedia_search(query):
28
- page = wiki_api.page(query)
29
- return page.summary if page.exists() and page.summary else None
 
 
 
 
 
30
 
31
- def hf_chat_model(question):
32
- last_error = ""
33
  for model_id in CONVERSATIONAL_MODELS:
34
  try:
35
  hf_client = InferenceClient(model_id, token=HF_TOKEN)
36
- # Try conversational (preferred)
37
  if hasattr(hf_client, "conversational"):
38
  result = hf_client.conversational(
39
- messages=[{"role": "user", "content": question}],
40
  max_new_tokens=384,
41
  )
42
  if isinstance(result, dict) and "generated_text" in result:
@@ -47,79 +120,97 @@ def hf_chat_model(question):
47
  return result
48
  else:
49
  continue
50
- # Try text_generation as fallback
51
- result = hf_client.text_generation(question, max_new_tokens=384)
52
  if isinstance(result, dict) and "generated_text" in result:
53
  return result["generated_text"]
54
  elif isinstance(result, str):
55
  return result
56
  except Exception as e:
57
  last_error = f"{model_id}: {e}"
58
- continue
59
- return f"HF LLM error: {last_error or 'All models failed.'}"
60
-
61
- def try_parse_vegetable_list(question):
62
- if "vegetable" in question.lower():
63
- # Heuristic: find list in question, extract vegetables only
64
- import re
65
- food_match = re.findall(r"list\s+.*?:\s*([a-zA-Z0-9,\s\-]+)", question)
66
- food_str = food_match[0] if food_match else ""
67
- foods = [f.strip().lower() for f in food_str.split(",") if f.strip()]
68
- # Simple vegtable classifier (expand this list as needed)
69
- vegetables = set(["acorns", "broccoli", "celery", "green beans", "lettuce", "peanuts", "sweet potatoes", "zucchini", "corn", "bell pepper"])
70
- veg_list = sorted([f for f in foods if f in vegetables])
71
- if veg_list:
72
- return ", ".join(veg_list)
73
  return None
74
 
75
- def try_extract_first_name(question):
76
- # e.g. "first name of the only Malko Competition recipient"
77
- if "first name" in question.lower() and "malko" in question.lower():
78
- # Use Wikipedia/duckduckgo search if not found
79
- return "Vladimir"
80
- return None
81
-
82
- def try_excel_sum(question, attachments=None):
83
- # This is a placeholder: actual code depends on file upload support
84
- if "excel" in question.lower() and "sales" in question.lower():
85
- # In HF spaces, the attachments param is not automatically supported.
86
- # If your UI supports uploads, read the file, parse food vs. drinks and sum.
87
- return "$12562.20"
88
- return None
89
 
90
- def try_pitcher_before_after(question):
91
- if "pitcher" in question.lower() and "before" in question.lower() and "after" in question.lower():
92
- # Without a lookup table or API, fallback to a general answer
93
- return "Kaneda, Kawakami"
94
- return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  # ==== SMART AGENT ====
97
  class SmartAgent:
98
  def __init__(self):
99
  pass
100
 
101
- def __call__(self, question: str, attachments=None) -> str:
102
- # 1. Specific pattern-based heuristics
103
- a = try_parse_vegetable_list(question)
104
- if a: return a
105
- a = try_extract_first_name(question)
106
- if a: return a
107
- a = try_excel_sum(question, attachments)
108
- if a: return a
109
- a = try_pitcher_before_after(question)
110
- if a: return a
111
-
112
- # 2. DuckDuckGo for web/now/current questions
113
- if any(term in question.lower() for term in ["current", "latest", "2024", "2025", "who is the president", "recent", "live", "now", "today"]):
114
- duck_result = duckduckgo_search(question)
115
- if duck_result and "No DuckDuckGo" not in duck_result:
116
- return duck_result
117
- # 3. Wikipedia for factual lookups
118
- wiki_result = wikipedia_search(question)
119
- if wiki_result:
120
- return wiki_result
121
- # 4. LLM fallback
122
- return hf_chat_model(question)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  # ==== SUBMISSION LOGIC ====
125
  def run_and_submit_all(profile: gr.OAuthProfile | None):
 
1
  import os
2
+ import re
3
  import gradio as gr
4
  import requests
5
  import pandas as pd
6
  from huggingface_hub import InferenceClient
7
  from duckduckgo_search import DDGS
8
  import wikipediaapi
9
+ from bs4 import BeautifulSoup
10
+ import pdfplumber
11
 
12
  # ==== CONFIG ====
13
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
14
  HF_TOKEN = os.getenv("HF_TOKEN")
15
+ GROK_API_KEY = os.getenv("GROK_API_KEY") or "xai-AyJXz3OAAMuQiOrPzPptUWTmsEyI9vywPpbV19S1nCpXXKWoKLqOoGc61RazPPui2fx4Ekb1durXccqz"
16
 
17
  CONVERSATIONAL_MODELS = [
18
  "deepseek-ai/DeepSeek-LLM",
 
22
 
23
  wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
24
 
25
+ # ==== UTILITY: Link/file detection ====
26
+ def extract_links(text):
27
+ url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
28
+ return url_pattern.findall(text)
29
+
30
+ def download_file(url, out_dir="tmp_files"):
31
+ os.makedirs(out_dir, exist_ok=True)
32
+ filename = url.split("/")[-1].split("?")[0]
33
+ local_path = os.path.join(out_dir, filename)
34
+ try:
35
+ r = requests.get(url, timeout=20)
36
+ r.raise_for_status()
37
+ with open(local_path, "wb") as f:
38
+ f.write(r.content)
39
+ return local_path
40
+ except Exception:
41
+ return None
42
+
43
+ # ==== File/Link Analyzers ====
44
+ def analyze_file(file_path):
45
+ if file_path.endswith((".xlsx", ".xls")):
46
+ try:
47
+ df = pd.read_excel(file_path)
48
+ return f"Excel summary: {df.head().to_markdown(index=False)}"
49
+ except Exception as e:
50
+ return f"Excel error: {e}"
51
+ elif file_path.endswith(".csv"):
52
+ try:
53
+ df = pd.read_csv(file_path)
54
+ return f"CSV summary: {df.head().to_markdown(index=False)}"
55
+ except Exception as e:
56
+ return f"CSV error: {e}"
57
+ elif file_path.endswith(".pdf"):
58
+ try:
59
+ with pdfplumber.open(file_path) as pdf:
60
+ first_page = pdf.pages[0].extract_text()
61
+ return f"PDF text sample: {first_page[:1000]}"
62
+ except Exception as e:
63
+ return f"PDF error: {e}"
64
+ elif file_path.endswith(".txt"):
65
+ try:
66
+ with open(file_path, encoding='utf-8') as f:
67
+ txt = f.read()
68
+ return f"TXT file sample: {txt[:1000]}"
69
+ except Exception as e:
70
+ return f"TXT error: {e}"
71
+ else:
72
+ return f"Unsupported file type: {file_path}"
73
+
74
+ def analyze_webpage(url):
75
+ try:
76
+ r = requests.get(url, timeout=15)
77
+ soup = BeautifulSoup(r.text, "lxml")
78
+ title = soup.title.string if soup.title else "No title"
79
+ paragraphs = [p.get_text() for p in soup.find_all("p")]
80
+ article_sample = "\n".join(paragraphs[:5])
81
+ return f"Webpage Title: {title}\nContent sample:\n{article_sample[:1200]}"
82
+ except Exception as e:
83
+ return f"Webpage error: {e}"
84
+
85
  # ==== SEARCH TOOLS ====
86
  def duckduckgo_search(query):
87
+ try:
88
+ with DDGS() as ddgs:
89
+ results = [r for r in ddgs.text(query, max_results=3)]
90
+ bodies = [r.get("body", "") for r in results if r.get("body")]
91
+ return "\n".join(bodies) if bodies else None
92
+ except Exception:
93
+ return None
94
 
95
  def wikipedia_search(query):
96
+ try:
97
+ page = wiki_api.page(query)
98
+ if page.exists() and page.summary:
99
+ return page.summary
100
+ except Exception:
101
+ return None
102
+ return None
103
 
104
+ def llm_conversational(query):
105
+ last_error = None
106
  for model_id in CONVERSATIONAL_MODELS:
107
  try:
108
  hf_client = InferenceClient(model_id, token=HF_TOKEN)
109
+ # Try conversational if available, else fallback to text_generation
110
  if hasattr(hf_client, "conversational"):
111
  result = hf_client.conversational(
112
+ messages=[{"role": "user", "content": query}],
113
  max_new_tokens=384,
114
  )
115
  if isinstance(result, dict) and "generated_text" in result:
 
120
  return result
121
  else:
122
  continue
123
+ result = hf_client.text_generation(query, max_new_tokens=384)
 
124
  if isinstance(result, dict) and "generated_text" in result:
125
  return result["generated_text"]
126
  elif isinstance(result, str):
127
  return result
128
  except Exception as e:
129
  last_error = f"{model_id}: {e}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  return None
131
 
132
+ def is_coding_question(text):
133
+ # Basic heuristic: mentions code, function, "python", code blocks, etc.
134
+ code_terms = [
135
+ "python", "java", "c++", "code", "function", "write a", "script", "algorithm",
136
+ "bug", "traceback", "error", "output", "compile", "debug"
137
+ ]
138
+ if any(term in text.lower() for term in code_terms):
139
+ return True
140
+ if re.search(r"```.+```", text, re.DOTALL):
141
+ return True
142
+ return False
 
 
 
143
 
144
+ def grok_completion(question, system_prompt=None):
145
+ url = "https://api.x.ai/v1/chat/completions"
146
+ headers = {
147
+ "Content-Type": "application/json",
148
+ "Authorization": f"Bearer {GROK_API_KEY}"
149
+ }
150
+ payload = {
151
+ "messages": [
152
+ {"role": "system", "content": system_prompt or "You are a helpful coding and research assistant."},
153
+ {"role": "user", "content": question}
154
+ ],
155
+ "model": "grok-3-latest",
156
+ "stream": False,
157
+ "temperature": 0
158
+ }
159
+ try:
160
+ r = requests.post(url, headers=headers, json=payload, timeout=45)
161
+ r.raise_for_status()
162
+ data = r.json()
163
+ # Extract assistant's reply
164
+ return data['choices'][0]['message']['content']
165
+ except Exception as e:
166
+ return None
167
 
168
  # ==== SMART AGENT ====
169
  class SmartAgent:
170
  def __init__(self):
171
  pass
172
 
173
+ def __call__(self, question: str) -> str:
174
+ # 1. Handle file/link
175
+ links = extract_links(question)
176
+ if links:
177
+ results = []
178
+ for url in links:
179
+ if re.search(r"\.xlsx|\.xls|\.csv|\.pdf|\.txt", url):
180
+ local = download_file(url)
181
+ if local:
182
+ file_analysis = analyze_file(local)
183
+ results.append(f"File ({url}):\n{file_analysis}")
184
+ else:
185
+ results.append(analyze_webpage(url))
186
+ if results:
187
+ return "\n\n".join(results)
188
+
189
+ # 2. Coding or algorithmic problems? Try Grok FIRST
190
+ if is_coding_question(question):
191
+ grok_response = grok_completion(question)
192
+ if grok_response:
193
+ return f"[Grok] {grok_response}"
194
+
195
+ # 3. DuckDuckGo for web knowledge
196
+ result = duckduckgo_search(question)
197
+ if result:
198
+ return result
199
+ # 4. Wikipedia for encyclopedic queries
200
+ result = wikipedia_search(question)
201
+ if result:
202
+ return result
203
+ # 5. Grok again for hard/reasoning/general (if not already tried)
204
+ if not is_coding_question(question):
205
+ grok_response = grok_completion(question)
206
+ if grok_response:
207
+ return f"[Grok] {grok_response}"
208
+
209
+ # 6. Fallback to LLM conversational
210
+ result = llm_conversational(question)
211
+ if result:
212
+ return result
213
+ return "No answer could be found by available tools."
214
 
215
  # ==== SUBMISSION LOGIC ====
216
  def run_and_submit_all(profile: gr.OAuthProfile | None):