Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,19 +12,18 @@ import pdfplumber
|
|
12 |
# ==== CONFIG ====
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
-
|
16 |
-
# SOTA models: for general and code queries
|
17 |
CONVERSATIONAL_MODELS = [
|
18 |
"deepseek-ai/DeepSeek-V2-Chat",
|
19 |
"Qwen/Qwen2-72B-Instruct",
|
20 |
"mistralai/Mixtral-8x22B-Instruct-v0.1",
|
21 |
-
"meta-llama/Meta-Llama-3-70B-Instruct"
|
|
|
22 |
]
|
23 |
-
CODING_MODEL = "deepseek-ai/DeepSeek-Coder-33B-Instruct"
|
24 |
|
25 |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
|
26 |
|
27 |
-
# ====
|
28 |
def extract_links(text):
|
29 |
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
|
30 |
return url_pattern.findall(text or "")
|
@@ -42,26 +41,36 @@ def download_file(url, out_dir="tmp_files"):
|
|
42 |
except Exception:
|
43 |
return None
|
44 |
|
|
|
45 |
def analyze_file(file_path):
|
46 |
-
|
47 |
-
|
48 |
df = pd.read_excel(file_path)
|
49 |
return f"Excel summary: {df.head().to_markdown(index=False)}"
|
50 |
-
|
|
|
|
|
|
|
51 |
df = pd.read_csv(file_path)
|
52 |
return f"CSV summary: {df.head().to_markdown(index=False)}"
|
53 |
-
|
|
|
|
|
|
|
54 |
with pdfplumber.open(file_path) as pdf:
|
55 |
first_page = pdf.pages[0].extract_text()
|
56 |
return f"PDF text sample: {first_page[:1000]}"
|
57 |
-
|
|
|
|
|
|
|
58 |
with open(file_path, encoding='utf-8') as f:
|
59 |
txt = f.read()
|
60 |
return f"TXT file sample: {txt[:1000]}"
|
61 |
-
|
62 |
-
return f"
|
63 |
-
|
64 |
-
return f"
|
65 |
|
66 |
def analyze_webpage(url):
|
67 |
try:
|
@@ -74,6 +83,7 @@ def analyze_webpage(url):
|
|
74 |
except Exception as e:
|
75 |
return f"Webpage error: {e}"
|
76 |
|
|
|
77 |
def duckduckgo_search(query):
|
78 |
try:
|
79 |
with DDGS() as ddgs:
|
@@ -103,31 +113,25 @@ def is_coding_question(text):
|
|
103 |
return True
|
104 |
return False
|
105 |
|
106 |
-
def
|
107 |
-
try:
|
108 |
-
hf_client = InferenceClient(CODING_MODEL, token=HF_TOKEN)
|
109 |
-
result = hf_client.text_generation(query, max_new_tokens=1024)
|
110 |
-
if isinstance(result, dict) and "generated_text" in result:
|
111 |
-
return f"[{CODING_MODEL}] {result['generated_text']}"
|
112 |
-
elif isinstance(result, str):
|
113 |
-
return f"[{CODING_MODEL}] {result}"
|
114 |
-
return "Unknown result format from coder model."
|
115 |
-
except Exception as e:
|
116 |
-
return f"Coder Model Error: {e}"
|
117 |
-
|
118 |
-
def llm_conversational(query):
|
119 |
last_error = None
|
120 |
for model_id in CONVERSATIONAL_MODELS:
|
121 |
try:
|
122 |
hf_client = InferenceClient(model_id, token=HF_TOKEN)
|
123 |
-
result = hf_client.
|
|
|
|
|
|
|
|
|
124 |
if isinstance(result, dict) and "generated_text" in result:
|
125 |
-
return f"[{model_id}]
|
|
|
|
|
126 |
elif isinstance(result, str):
|
127 |
-
return f"[{model_id}]
|
128 |
except Exception as e:
|
129 |
last_error = f"{model_id}: {e}"
|
130 |
-
return f"LLM Error (all advanced models): {last_error
|
131 |
|
132 |
# ==== SMART AGENT ====
|
133 |
class SmartAgent:
|
@@ -152,28 +156,40 @@ class SmartAgent:
|
|
152 |
if results:
|
153 |
return "\n\n".join(results)
|
154 |
|
155 |
-
# 2.
|
156 |
if is_coding_question(question):
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
# 3. DuckDuckGo for
|
162 |
result = duckduckgo_search(question)
|
163 |
if result:
|
164 |
return result
|
165 |
|
166 |
-
# 4. Wikipedia for encyclopedic
|
167 |
result = wikipedia_search(question)
|
168 |
if result:
|
169 |
return result
|
170 |
|
171 |
-
# 5.
|
172 |
result = llm_conversational(question)
|
173 |
if result:
|
174 |
return result
|
175 |
|
176 |
-
return "No answer could be found by available
|
177 |
|
178 |
# ==== SUBMISSION LOGIC ====
|
179 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
12 |
# ==== CONFIG ====
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
+
# Your list of SOTA chat models, in order of preference
|
|
|
16 |
CONVERSATIONAL_MODELS = [
|
17 |
"deepseek-ai/DeepSeek-V2-Chat",
|
18 |
"Qwen/Qwen2-72B-Instruct",
|
19 |
"mistralai/Mixtral-8x22B-Instruct-v0.1",
|
20 |
+
"meta-llama/Meta-Llama-3-70B-Instruct",
|
21 |
+
"deepseek-ai/DeepSeek-Coder-33B-Instruct"
|
22 |
]
|
|
|
23 |
|
24 |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
|
25 |
|
26 |
+
# ==== UTILITY: Link/file detection ====
|
27 |
def extract_links(text):
|
28 |
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
|
29 |
return url_pattern.findall(text or "")
|
|
|
41 |
except Exception:
|
42 |
return None
|
43 |
|
44 |
+
# ==== File/Link Analyzers ====
|
45 |
def analyze_file(file_path):
|
46 |
+
if file_path.endswith((".xlsx", ".xls")):
|
47 |
+
try:
|
48 |
df = pd.read_excel(file_path)
|
49 |
return f"Excel summary: {df.head().to_markdown(index=False)}"
|
50 |
+
except Exception as e:
|
51 |
+
return f"Excel error: {e}"
|
52 |
+
elif file_path.endswith(".csv"):
|
53 |
+
try:
|
54 |
df = pd.read_csv(file_path)
|
55 |
return f"CSV summary: {df.head().to_markdown(index=False)}"
|
56 |
+
except Exception as e:
|
57 |
+
return f"CSV error: {e}"
|
58 |
+
elif file_path.endswith(".pdf"):
|
59 |
+
try:
|
60 |
with pdfplumber.open(file_path) as pdf:
|
61 |
first_page = pdf.pages[0].extract_text()
|
62 |
return f"PDF text sample: {first_page[:1000]}"
|
63 |
+
except Exception as e:
|
64 |
+
return f"PDF error: {e}"
|
65 |
+
elif file_path.endswith(".txt"):
|
66 |
+
try:
|
67 |
with open(file_path, encoding='utf-8') as f:
|
68 |
txt = f.read()
|
69 |
return f"TXT file sample: {txt[:1000]}"
|
70 |
+
except Exception as e:
|
71 |
+
return f"TXT error: {e}"
|
72 |
+
else:
|
73 |
+
return f"Unsupported file type: {file_path}"
|
74 |
|
75 |
def analyze_webpage(url):
|
76 |
try:
|
|
|
83 |
except Exception as e:
|
84 |
return f"Webpage error: {e}"
|
85 |
|
86 |
+
# ==== SEARCH TOOLS ====
|
87 |
def duckduckgo_search(query):
|
88 |
try:
|
89 |
with DDGS() as ddgs:
|
|
|
113 |
return True
|
114 |
return False
|
115 |
|
116 |
+
def llm_conversational(question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
last_error = None
|
118 |
for model_id in CONVERSATIONAL_MODELS:
|
119 |
try:
|
120 |
hf_client = InferenceClient(model_id, token=HF_TOKEN)
|
121 |
+
result = hf_client.conversational(
|
122 |
+
messages=[{"role": "user", "content": question}],
|
123 |
+
max_new_tokens=512,
|
124 |
+
)
|
125 |
+
# Extract generated_text
|
126 |
if isinstance(result, dict) and "generated_text" in result:
|
127 |
+
return f"[{model_id}] " + result["generated_text"]
|
128 |
+
elif hasattr(result, "generated_text"):
|
129 |
+
return f"[{model_id}] " + result.generated_text
|
130 |
elif isinstance(result, str):
|
131 |
+
return f"[{model_id}] " + result
|
132 |
except Exception as e:
|
133 |
last_error = f"{model_id}: {e}"
|
134 |
+
return f"LLM Error (all advanced models): {last_error}"
|
135 |
|
136 |
# ==== SMART AGENT ====
|
137 |
class SmartAgent:
|
|
|
156 |
if results:
|
157 |
return "\n\n".join(results)
|
158 |
|
159 |
+
# 2. Coding/algorithmic questions: Prefer DeepSeek-Coder-33B
|
160 |
if is_coding_question(question):
|
161 |
+
coder_client = InferenceClient("deepseek-ai/DeepSeek-Coder-33B-Instruct", token=HF_TOKEN)
|
162 |
+
try:
|
163 |
+
coder_result = coder_client.conversational(
|
164 |
+
messages=[{"role": "user", "content": question}],
|
165 |
+
max_new_tokens=512,
|
166 |
+
)
|
167 |
+
if isinstance(coder_result, dict) and "generated_text" in coder_result:
|
168 |
+
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result["generated_text"]
|
169 |
+
elif hasattr(coder_result, "generated_text"):
|
170 |
+
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result.generated_text
|
171 |
+
elif isinstance(coder_result, str):
|
172 |
+
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result
|
173 |
+
except Exception as e:
|
174 |
+
# fallback to other chat models
|
175 |
+
pass
|
176 |
|
177 |
+
# 3. DuckDuckGo for current/web knowledge
|
178 |
result = duckduckgo_search(question)
|
179 |
if result:
|
180 |
return result
|
181 |
|
182 |
+
# 4. Wikipedia for encyclopedic queries
|
183 |
result = wikipedia_search(question)
|
184 |
if result:
|
185 |
return result
|
186 |
|
187 |
+
# 5. Fallback to conversational LLMs
|
188 |
result = llm_conversational(question)
|
189 |
if result:
|
190 |
return result
|
191 |
|
192 |
+
return "No answer could be found by available tools."
|
193 |
|
194 |
# ==== SUBMISSION LOGIC ====
|
195 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|