File size: 99,490 Bytes
15bb146 5c26e67 15bb146 5c26e67 15bb146 a1492aa 15bb146 c7cc357 15bb146 c7cc357 15bb146 c7cc357 15bb146 c7cc357 15bb146 c7cc357 15bb146 c7cc357 15bb146 c7cc357 15bb146 26eff0c 15bb146 a1492aa 15bb146 a1492aa 15bb146 a1492aa 15bb146 a1492aa 15bb146 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 |
#!/usr/bin/env python3
"""
🚀 GAIA Multi-Agent System - UNIVERSAL MULTIMODAL AI AGENT
Enhanced with comprehensive multimodal capabilities for ANY type of question:
- 🎥 Video Processing & Analysis
- 🎵 Audio Processing & Speech Recognition
- 🎨 Image Generation & Advanced Computer Vision
- 📊 Data Visualization & Chart Generation
- 🎙️ Speech Synthesis & Voice Generation
- 🎬 Video Generation & Editing
- 🧬 Scientific Computing & Analysis
- 📈 Advanced Analytics & Modeling
"""
import os
import sys
import re
import json
import time
import random
import logging
import requests
import tempfile
import base64
import hashlib
import subprocess
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass
from enum import Enum
from urllib.parse import urlparse, urljoin
import math
import statistics
# Core AI and Web Libraries
try:
from huggingface_hub import InferenceClient
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
print("⚠️ huggingface_hub not available. AI features limited.")
try:
import openai
OPENAI_AVAILABLE = True
except ImportError:
OPENAI_AVAILABLE = False
print("⚠️ OpenAI not available. GPT models unavailable.")
# Web Scraping
try:
from bs4 import BeautifulSoup
BS4_AVAILABLE = True
except ImportError:
BS4_AVAILABLE = False
print("⚠️ BeautifulSoup not available. Web scraping limited.")
# Image Processing
try:
from PIL import Image, ImageDraw, ImageFont
PIL_AVAILABLE = True
except ImportError:
PIL_AVAILABLE = False
print("⚠️ Pillow not available. Image processing limited.")
# Video Processing
try:
import cv2
CV2_AVAILABLE = True
except ImportError:
CV2_AVAILABLE = False
print("⚠️ OpenCV not available. Video processing unavailable.")
# Audio Processing
try:
import librosa
import soundfile as sf
AUDIO_AVAILABLE = True
except ImportError:
AUDIO_AVAILABLE = False
print("⚠️ Audio libraries not available. Audio processing unavailable.")
# Speech Recognition
try:
import speech_recognition as sr
SPEECH_AVAILABLE = True
except ImportError:
SPEECH_AVAILABLE = False
print("⚠️ Speech recognition not available.")
# Text-to-Speech
try:
import pyttsx3
TTS_AVAILABLE = True
except ImportError:
TTS_AVAILABLE = False
print("⚠️ Text-to-speech not available.")
# Data Visualization
try:
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import plotly.express as px
VIZ_AVAILABLE = True
# Optional: seaborn
try:
import seaborn as sns
SEABORN_AVAILABLE = True
except ImportError:
SEABORN_AVAILABLE = False
sns = None
except ImportError:
VIZ_AVAILABLE = False
SEABORN_AVAILABLE = False
plt = None
go = None
px = None
sns = None
print("⚠️ Visualization libraries not available.")
# Scientific Computing
try:
import numpy as np
import pandas as pd
import scipy.stats as stats
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
SCIENCE_AVAILABLE = True
except ImportError:
SCIENCE_AVAILABLE = False
print("⚠️ Scientific computing libraries not available.")
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ToolType(Enum):
"""🛠️ Universal tool types for any content type"""
# Original tools
WEB_SEARCH = "web_search"
BROWSE_URL = "browse_url"
DOWNLOAD_FILE = "download_file"
READ_PDF = "read_pdf"
ANALYZE_IMAGE = "analyze_image"
CALCULATOR = "calculator"
# New multimodal tools
PROCESS_VIDEO = "process_video"
ANALYZE_AUDIO = "analyze_audio"
GENERATE_IMAGE = "generate_image"
SYNTHESIZE_SPEECH = "synthesize_speech"
CREATE_VISUALIZATION = "create_visualization"
ANALYZE_DATA = "analyze_data"
GENERATE_VIDEO = "generate_video"
EXTRACT_AUDIO = "extract_audio"
TRANSCRIBE_SPEECH = "transcribe_speech"
DETECT_OBJECTS = "detect_objects"
FACE_RECOGNITION = "face_recognition"
SCIENTIFIC_COMPUTE = "scientific_compute"
@dataclass
class ToolCall:
tool: ToolType
parameters: Dict[str, Any]
class UniversalMultimodalToolkit:
"""🌟 Universal toolkit for processing ANY type of content"""
def __init__(self, hf_token: str = None, openai_key: str = None):
self.hf_token = hf_token
self.openai_key = openai_key
self.temp_dir = tempfile.mkdtemp()
# Initialize specialized clients
self._init_multimodal_clients()
def _init_multimodal_clients(self):
"""Initialize all multimodal AI clients"""
self.clients = {}
if self.hf_token and HF_AVAILABLE:
# Vision models
self.clients['vision'] = InferenceClient(model="Salesforce/blip-image-captioning-large", token=self.hf_token)
self.clients['image_gen'] = InferenceClient(model="stabilityai/stable-diffusion-xl-base-1.0", token=self.hf_token)
self.clients['object_detection'] = InferenceClient(model="facebook/detr-resnet-50", token=self.hf_token)
# Audio models - Updated to use provider pattern for speech recognition
self.clients['speech_to_text'] = InferenceClient(
provider="hf-inference",
api_key=self.hf_token,
)
self.clients['audio_classification'] = InferenceClient(model="facebook/wav2vec2-base-960h", token=self.hf_token)
# Text generation for multimodal
self.clients['text_gen'] = InferenceClient(model="meta-llama/Meta-Llama-3-8B-Instruct", token=self.hf_token)
# === VIDEO PROCESSING ===
def process_video(self, video_path: str, task: str = "analyze") -> str:
"""🎥 Process and analyze video content"""
if not CV2_AVAILABLE:
return "❌ Video processing unavailable. Install opencv-python."
try:
logger.info(f"🎥 Processing video: {video_path} | Task: {task}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return f"❌ Could not open video: {video_path}"
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = frame_count / fps if fps > 0 else 0
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_info = f"Video: {width}x{height}, {fps:.1f} FPS, {duration:.1f}s, {frame_count} frames"
if task == "extract_frames":
# Extract key frames for analysis
frames_extracted = []
frame_interval = max(1, frame_count // 10) # Extract 10 frames max
for i in range(0, frame_count, frame_interval):
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if ret:
frame_path = os.path.join(self.temp_dir, f"frame_{i}.jpg")
cv2.imwrite(frame_path, frame)
frames_extracted.append(frame_path)
cap.release()
# Analyze extracted frames
frame_analyses = []
for frame_path in frames_extracted[:3]: # Analyze first 3 frames
analysis = self.analyze_image(frame_path, "Describe what you see in this video frame")
frame_analyses.append(analysis)
return f"{video_info}. Frame analysis: {'; '.join(frame_analyses)}"
elif task == "motion_detection":
# Simple motion detection
ret, frame1 = cap.read()
if not ret:
cap.release()
return f"{video_info}. Motion detection failed."
frame1_gray = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
motion_detected = 0
while True:
ret, frame2 = cap.read()
if not ret:
break
frame2_gray = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
diff = cv2.absdiff(frame1_gray, frame2_gray)
if cv2.countNonZero(diff) > 5000: # Threshold for motion
motion_detected += 1
frame1_gray = frame2_gray
cap.release()
motion_percentage = (motion_detected / frame_count) * 100
return f"{video_info}. Motion detected in {motion_percentage:.1f}% of frames."
else:
cap.release()
return f"{video_info}. Basic video analysis complete."
except Exception as e:
logger.error(f"❌ Video processing error: {e}")
return f"❌ Video processing failed: {e}"
# === AUDIO PROCESSING ===
def analyze_audio(self, audio_path: str, task: str = "analyze") -> str:
"""🎵 Analyze audio content"""
if not AUDIO_AVAILABLE:
return "❌ Audio processing unavailable. Install librosa and soundfile."
try:
logger.info(f"🎵 Analyzing audio: {audio_path} | Task: {task}")
# Load audio
y, sr = librosa.load(audio_path, sr=None)
duration = len(y) / sr
audio_info = f"Audio: {duration:.1f}s, {sr} Hz, {len(y)} samples"
if task == "transcribe":
return self.transcribe_speech(audio_path)
elif task == "features":
# Extract audio features
tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
zero_crossing_rate = librosa.feature.zero_crossing_rate(y)[0]
features = {
"tempo": float(tempo),
"avg_spectral_centroid": float(np.mean(spectral_centroids)),
"avg_spectral_rolloff": float(np.mean(spectral_rolloff)),
"avg_zero_crossing_rate": float(np.mean(zero_crossing_rate))
}
return f"{audio_info}. Features: {json.dumps(features, indent=2)}"
else:
return f"{audio_info}. Basic audio analysis complete."
except Exception as e:
logger.error(f"❌ Audio analysis error: {e}")
return f"❌ Audio analysis failed: {e}"
def transcribe_speech(self, audio_path: str) -> str:
"""🎙️ Convert speech to text using Whisper via HuggingFace Inference API"""
try:
logger.info(f"🎙️ Transcribing speech from: {audio_path}")
if self.hf_token and HF_AVAILABLE and 'speech_to_text' in self.clients:
# Use Whisper via HuggingFace Inference API with provider pattern
try:
result = self.clients['speech_to_text'].automatic_speech_recognition(
audio_path,
model="openai/whisper-large-v3"
)
if isinstance(result, dict) and 'text' in result:
transcription = result['text'].strip()
elif isinstance(result, str):
transcription = result.strip()
else:
transcription = str(result).strip()
if transcription:
return f"Transcription: {transcription}"
else:
return "❌ No transcription available"
except Exception as hf_error:
logger.warning(f"⚠️ HuggingFace speech recognition failed: {hf_error}")
# Fall through to local recognition
# Fallback to local speech recognition if available
if SPEECH_AVAILABLE:
try:
r = sr.Recognizer()
with sr.AudioFile(audio_path) as source:
audio = r.record(source)
text = r.recognize_google(audio)
return f"Transcription: {text}"
except sr.UnknownValueError:
return "❌ Could not understand audio"
except sr.RequestError as e:
return f"❌ Speech recognition error: {e}"
else:
return "❌ Speech recognition unavailable. Need HuggingFace token or speech_recognition library."
except Exception as e:
logger.error(f"❌ Transcription error: {e}")
return f"❌ Transcription failed: {e}"
# === IMAGE GENERATION ===
def generate_image(self, prompt: str, style: str = "realistic") -> str:
"""🎨 Generate images from text descriptions"""
try:
logger.info(f"🎨 Generating image: {prompt} | Style: {style}")
if self.hf_token and 'image_gen' in self.clients:
# Use Stable Diffusion via HuggingFace
enhanced_prompt = f"{prompt}, {style} style, high quality, detailed"
image = self.clients['image_gen'].text_to_image(enhanced_prompt)
# Save generated image
image_path = os.path.join(self.temp_dir, f"generated_{int(time.time())}.png")
image.save(image_path)
return f"✅ Image generated and saved to: {image_path}"
elif self.openai_key and OPENAI_AVAILABLE:
# Use DALL-E via OpenAI
client = openai.OpenAI(api_key=self.openai_key)
response = client.images.generate(
model="dall-e-3",
prompt=f"{prompt}, {style} style",
size="1024x1024",
quality="standard",
n=1,
)
image_url = response.data[0].url
# Download and save image
img_response = requests.get(image_url)
image_path = os.path.join(self.temp_dir, f"dalle_generated_{int(time.time())}.png")
with open(image_path, 'wb') as f:
f.write(img_response.content)
return f"✅ DALL-E image generated and saved to: {image_path}"
else:
return "❌ Image generation unavailable. Need HuggingFace token or OpenAI key."
except Exception as e:
logger.error(f"❌ Image generation error: {e}")
return f"❌ Image generation failed: {e}"
# === SPEECH SYNTHESIS ===
def synthesize_speech(self, text: str, voice: str = "default") -> str:
"""🎙️ Convert text to speech"""
try:
logger.info(f"🎙️ Synthesizing speech: {text[:50]}... | Voice: {voice}")
if TTS_AVAILABLE:
engine = pyttsx3.init()
# Set voice properties
voices = engine.getProperty('voices')
if voices and len(voices) > 0:
if voice == "female" and len(voices) > 1:
engine.setProperty('voice', voices[1].id)
else:
engine.setProperty('voice', voices[0].id)
# Set speech rate and volume
engine.setProperty('rate', 150)
engine.setProperty('volume', 0.9)
# Generate speech file
speech_path = os.path.join(self.temp_dir, f"speech_{int(time.time())}.wav")
engine.save_to_file(text, speech_path)
engine.runAndWait()
return f"✅ Speech synthesized and saved to: {speech_path}"
else:
return "❌ Text-to-speech unavailable. Install pyttsx3."
except Exception as e:
logger.error(f"❌ Speech synthesis error: {e}")
return f"❌ Speech synthesis failed: {e}"
# === DATA VISUALIZATION ===
def create_visualization(self, data: Dict[str, Any], chart_type: str = "bar") -> str:
"""📊 Create data visualizations and charts"""
try:
logger.info(f"📊 Creating {chart_type} chart")
if not VIZ_AVAILABLE:
return "❌ Visualization unavailable. Install matplotlib, seaborn, and plotly."
# Prepare data
if isinstance(data, dict) and 'x' in data and 'y' in data:
x_data = data['x']
y_data = data['y']
title = data.get('title', 'Data Visualization')
else:
return "❌ Invalid data format. Need dict with 'x' and 'y' keys."
# Create visualization
plt.figure(figsize=(10, 6))
if chart_type == "bar":
plt.bar(x_data, y_data)
elif chart_type == "line":
plt.plot(x_data, y_data, marker='o')
elif chart_type == "scatter":
plt.scatter(x_data, y_data)
elif chart_type == "pie":
plt.pie(y_data, labels=x_data, autopct='%1.1f%%')
else:
plt.plot(x_data, y_data)
plt.title(title)
plt.xlabel(data.get('xlabel', 'X'))
plt.ylabel(data.get('ylabel', 'Y'))
plt.grid(True, alpha=0.3)
# Save chart
chart_path = os.path.join(self.temp_dir, f"chart_{int(time.time())}.png")
plt.savefig(chart_path, dpi=300, bbox_inches='tight')
plt.close()
return f"✅ {chart_type.title()} chart created and saved to: {chart_path}"
except Exception as e:
logger.error(f"❌ Visualization error: {e}")
return f"❌ Visualization failed: {e}"
# === SCIENTIFIC COMPUTING ===
def scientific_compute(self, operation: str, data: Dict[str, Any]) -> str:
"""🧬 Perform scientific computations and analysis"""
try:
if not SCIENCE_AVAILABLE:
return "❌ Scientific computing unavailable. Install numpy, pandas, scipy, sklearn."
logger.info(f"🧬 Scientific computation: {operation}")
if operation == "statistics":
values = data.get('values', [])
if not values:
return "❌ No values provided for statistics"
result = {
"mean": float(np.mean(values)),
"median": float(np.median(values)),
"std": float(np.std(values)),
"min": float(np.min(values)),
"max": float(np.max(values)),
"variance": float(np.var(values)),
"skewness": float(stats.skew(values)),
"kurtosis": float(stats.kurtosis(values))
}
return f"Statistics: {json.dumps(result, indent=2)}"
elif operation == "correlation":
x = data.get('x', [])
y = data.get('y', [])
if not x or not y or len(x) != len(y):
return "❌ Need equal length x and y arrays for correlation"
correlation = float(np.corrcoef(x, y)[0, 1])
p_value = float(stats.pearsonr(x, y)[1])
return f"Correlation: {correlation:.4f}, P-value: {p_value:.4f}"
elif operation == "clustering":
data_points = data.get('data', [])
n_clusters = data.get('clusters', 3)
if not data_points:
return "❌ No data points provided for clustering"
# Perform K-means clustering
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data_points)
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
labels = kmeans.fit_predict(scaled_data)
return f"Clustering complete. Labels: {labels.tolist()}"
else:
return f"❌ Unknown scientific operation: {operation}"
except Exception as e:
logger.error(f"❌ Scientific computation error: {e}")
return f"❌ Scientific computation failed: {e}"
# === OBJECT DETECTION ===
def detect_objects(self, image_path: str) -> str:
"""🔍 Detect and identify objects in images"""
try:
logger.info(f"🔍 Detecting objects in: {image_path}")
if self.hf_token and 'object_detection' in self.clients:
with open(image_path, 'rb') as img_file:
result = self.clients['object_detection'].object_detection(img_file.read())
if result:
objects = []
for detection in result:
label = detection.get('label', 'unknown')
score = detection.get('score', 0)
objects.append(f"{label} ({score:.2f})")
return f"Objects detected: {', '.join(objects)}"
else:
return "No objects detected"
else:
return "❌ Object detection unavailable. Need HuggingFace token."
except Exception as e:
logger.error(f"❌ Object detection error: {e}")
return f"❌ Object detection failed: {e}"
# Enhanced existing methods
def web_search(self, query: str, num_results: int = 5) -> str:
"""🔍 Enhanced web search with comprehensive crawling and browsing"""
try:
logger.info(f"🔍 Web search: {query}")
# Enhanced DuckDuckGo search with better result extraction
search_url = f"https://duckduckgo.com/html/?q={requests.utils.quote(query)}"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(search_url, headers=headers, timeout=15)
response.raise_for_status()
if not BS4_AVAILABLE:
return f"⚠️ Search completed but parsing limited. Raw response length: {len(response.text)}"
soup = BeautifulSoup(response.text, 'html.parser')
results = []
# Enhanced result extraction with multiple patterns
result_selectors = [
'div.result',
'div[data-result-index]',
'article',
'li.result'
]
for selector in result_selectors:
search_results = soup.select(selector)[:num_results]
if search_results:
break
else:
search_results = []
for result in search_results:
# Extract title
title_elem = (result.find('a', class_='result__a') or
result.find('h2') or
result.find('h3') or
result.find('a'))
# Extract snippet
snippet_elem = (result.find('a', class_='result__snippet') or
result.find('span', class_='result__snippet') or
result.find('p'))
if title_elem:
title = title_elem.get_text(strip=True)
url = title_elem.get('href', '')
snippet = snippet_elem.get_text(strip=True) if snippet_elem else ""
# Clean and format URL
if url and not url.startswith('http'):
if url.startswith('//'):
url = 'https:' + url
elif url.startswith('/'):
url = 'https://duckduckgo.com' + url
results.append({
'title': title,
'url': url,
'snippet': snippet
})
if results:
# Format results for AI consumption
formatted_results = []
for i, result in enumerate(results, 1):
formatted_results.append(
f"{i}. {result['title']}\n"
f" {result['snippet']}\n"
f" URL: {result['url']}"
)
return "\n\n".join(formatted_results)
else:
# Fallback: Try alternative search approach
try:
alt_url = f"https://html.duckduckgo.com/html/?q={requests.utils.quote(query)}"
alt_response = requests.get(alt_url, headers=headers, timeout=10)
if alt_response.status_code == 200:
return f"Search completed for '{query}' - found {len(alt_response.text)} characters of content"
except:
pass
return f"🔍 No results found for '{query}'"
except Exception as e:
logger.error(f"❌ Web search error: {e}")
return f"❌ Web search failed: {e}"
def browse_url(self, url: str) -> str:
"""🌐 Enhanced web browsing with content extraction"""
try:
logger.info(f"🌐 Browsing URL: {url}")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'Connection': 'keep-alive'
}
response = requests.get(url, headers=headers, timeout=15, allow_redirects=True)
response.raise_for_status()
if not BS4_AVAILABLE:
return f"⚠️ URL accessed but content parsing limited. Content length: {len(response.text)}"
soup = BeautifulSoup(response.text, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style", "nav", "footer", "header"]):
script.decompose()
# Extract main content
content_selectors = [
'main',
'article',
'div[role="main"]',
'div.content',
'div.main-content',
'div.post-content',
'div.entry-content',
'div.article-body',
'section'
]
main_content = None
for selector in content_selectors:
main_content = soup.select_one(selector)
if main_content:
break
if not main_content:
main_content = soup.find('body') or soup
# Extract text content
text_content = main_content.get_text(separator=' ', strip=True)
# Clean up the text
lines = text_content.split('\n')
cleaned_lines = []
for line in lines:
line = line.strip()
if line and len(line) > 3: # Filter out very short lines
cleaned_lines.append(line)
content = '\n'.join(cleaned_lines)
# Truncate if too long (keep first 3000 characters)
if len(content) > 3000:
content = content[:3000] + "... [content truncated]"
return f"📄 Content from {url}:\n\n{content}"
except Exception as e:
logger.error(f"❌ URL browsing error: {e}")
return f"❌ Failed to browse {url}: {e}"
def download_file(self, url: str, task_id: str = None) -> str:
"""📥 Download files from URLs or GAIA API"""
try:
logger.info(f"📥 Downloading file from: {url}")
# Handle GAIA API task file downloads
if task_id and not url:
gaia_url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/raw/main/2023/validation/{task_id}"
url = gaia_url
# Set up headers
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
# Download the file
response = requests.get(url, headers=headers, timeout=30, stream=True)
response.raise_for_status()
# Determine file extension
content_type = response.headers.get('content-type', '').lower()
if 'pdf' in content_type:
extension = '.pdf'
elif 'image' in content_type:
if 'jpeg' in content_type or 'jpg' in content_type:
extension = '.jpg'
elif 'png' in content_type:
extension = '.png'
else:
extension = '.img'
elif 'text' in content_type:
extension = '.txt'
else:
# Try to extract from URL
parsed_url = urlparse(url)
path = parsed_url.path
if '.' in path:
extension = '.' + path.split('.')[-1]
else:
extension = '.bin'
# Save to temp directory
filename = f"downloaded_file_{task_id or 'temp'}{extension}"
filepath = os.path.join(self.temp_dir, filename)
with open(filepath, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
logger.info(f"📥 File downloaded to: {filepath}")
return filepath
except Exception as e:
logger.error(f"❌ File download error: {e}")
return f"❌ Download failed: {e}"
def read_pdf(self, file_path: str) -> str:
"""📄 Read and extract text from PDF files"""
try:
logger.info(f"📄 Reading PDF: {file_path}")
# Try importing PyPDF2
try:
import PyPDF2
PDF_AVAILABLE = True
except ImportError:
PDF_AVAILABLE = False
if not PDF_AVAILABLE:
return "❌ PDF reading unavailable. Install PyPDF2."
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text_content = []
for page_num, page in enumerate(pdf_reader.pages):
try:
text = page.extract_text()
if text.strip():
text_content.append(f"[Page {page_num + 1}]\n{text}")
except Exception as page_error:
logger.warning(f"⚠️ Error reading page {page_num + 1}: {page_error}")
text_content.append(f"[Page {page_num + 1}] - Error reading page")
full_text = "\n\n".join(text_content)
# Truncate if too long
if len(full_text) > 5000:
full_text = full_text[:5000] + "... [content truncated]"
return full_text
except Exception as e:
logger.error(f"❌ PDF reading error: {e}")
return f"❌ Failed to read PDF: {e}"
def calculator(self, expression: str) -> str:
"""🧮 Enhanced mathematical calculator with scientific functions"""
try:
logger.info(f"🧮 Calculating: {expression}")
# Import required math modules
import math
import statistics
# Clean the expression
expression = expression.strip()
# Allow common mathematical functions
safe_dict = {
"__builtins__": {},
"abs": abs,
"round": round,
"min": min,
"max": max,
"sum": sum,
"len": len,
"pow": pow,
"sqrt": math.sqrt,
"sin": math.sin,
"cos": math.cos,
"tan": math.tan,
"log": math.log,
"log10": math.log10,
"exp": math.exp,
"pi": math.pi,
"e": math.e,
"factorial": math.factorial,
"mean": statistics.mean,
"median": statistics.median,
"mode": statistics.mode,
"stdev": statistics.stdev,
}
# Evaluate the expression safely
result = eval(expression, safe_dict, {})
# Format the result appropriately
if isinstance(result, float):
if result.is_integer():
return str(int(result))
else:
return f"{result:.6f}".rstrip('0').rstrip('.')
else:
return str(result)
except Exception as e:
logger.error(f"❌ Calculation error: {e}")
return f"❌ Calculation failed: {e}"
def analyze_image(self, image_path: str, question: str = "") -> str:
"""🖼️ Enhanced image analysis with multiple AI models"""
if not PIL_AVAILABLE:
return "❌ Image analysis unavailable. Install Pillow."
try:
logger.info(f"🖼️ Analyzing image: {image_path} | Question: {question}")
# Get basic image info
with Image.open(image_path) as img:
basic_info = f"Image: {img.size[0]}x{img.size[1]} pixels, format: {img.format}, mode: {img.mode}"
# Multi-model analysis
analyses = []
# 1. OpenAI GPT-4V (if available)
if self.openai_key and question:
try:
with open(image_path, 'rb') as img_file:
img_base64 = base64.b64encode(img_file.read()).decode('utf-8')
client = openai.OpenAI(api_key=self.openai_key)
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": f"Analyze this image and answer: {question}. Provide only the direct answer, no explanations."},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"}
}
]
}
],
max_tokens=300
)
gpt4v_result = response.choices[0].message.content.strip()
analyses.append(f"GPT-4V: {gpt4v_result}")
except Exception as vision_error:
logger.warning(f"⚠️ GPT-4V analysis failed: {vision_error}")
# 2. HuggingFace Vision Models (if available)
if self.hf_token and 'vision' in self.clients:
try:
with open(image_path, 'rb') as img_file:
caption = self.clients['vision'].image_to_text(img_file.read())
if caption:
analyses.append(f"BLIP: {caption[0].get('generated_text', 'No caption')}")
except Exception as hf_error:
logger.warning(f"⚠️ HuggingFace vision analysis failed: {hf_error}")
# 3. Object Detection
if question and "object" in question.lower():
obj_result = self.detect_objects(image_path)
if not obj_result.startswith("❌"):
analyses.append(f"Objects: {obj_result}")
# Combine all analyses
if analyses:
combined_analysis = "; ".join(analyses)
return f"{basic_info}. Analysis: {combined_analysis}"
else:
return f"{basic_info}. Advanced vision analysis requires API keys."
except Exception as e:
logger.error(f"❌ Image analysis error: {e}")
return f"❌ Image analysis failed: {e}"
# === ENHANCED DOCUMENT PROCESSING ===
def read_docx(self, file_path: str) -> str:
"""📄 Read Microsoft Word documents"""
try:
import docx2txt
text = docx2txt.process(file_path)
logger.info(f"📄 DOCX read: {len(text)} characters")
return text
except ImportError:
logger.warning("⚠️ docx2txt not available. Install python-docx.")
return "❌ DOCX reading unavailable. Install python-docx."
except Exception as e:
logger.error(f"❌ DOCX reading error: {e}")
return f"❌ DOCX reading failed: {e}"
def read_excel(self, file_path: str, sheet_name: str = None) -> str:
"""📊 Read Excel spreadsheets"""
try:
import pandas as pd
if sheet_name:
df = pd.read_excel(file_path, sheet_name=sheet_name)
else:
df = pd.read_excel(file_path)
# Convert to readable format
result = f"Excel data ({df.shape[0]} rows, {df.shape[1]} columns):\n"
result += df.to_string(max_rows=50, max_cols=10)
logger.info(f"📊 Excel read: {df.shape}")
return result
except ImportError:
logger.warning("⚠️ pandas not available for Excel reading.")
return "❌ Excel reading unavailable. Install pandas and openpyxl."
except Exception as e:
logger.error(f"❌ Excel reading error: {e}")
return f"❌ Excel reading failed: {e}"
def read_csv(self, file_path: str) -> str:
"""📋 Read CSV files"""
try:
import pandas as pd
df = pd.read_csv(file_path)
# Convert to readable format
result = f"CSV data ({df.shape[0]} rows, {df.shape[1]} columns):\n"
result += df.head(20).to_string()
if df.shape[0] > 20:
result += f"\n... (showing first 20 of {df.shape[0]} rows)"
logger.info(f"📋 CSV read: {df.shape}")
return result
except ImportError:
logger.warning("⚠️ pandas not available for CSV reading.")
return "❌ CSV reading unavailable. Install pandas."
except Exception as e:
logger.error(f"❌ CSV reading error: {e}")
return f"❌ CSV reading failed: {e}"
def read_text_file(self, file_path: str, encoding: str = 'utf-8') -> str:
"""📝 Read plain text files with encoding detection"""
try:
# Try UTF-8 first
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
except UnicodeDecodeError:
# Try other common encodings
encodings = ['latin-1', 'cp1252', 'ascii']
content = None
for enc in encodings:
try:
with open(file_path, 'r', encoding=enc) as f:
content = f.read()
break
except UnicodeDecodeError:
continue
if content is None:
return "❌ Unable to decode text file with common encodings"
logger.info(f"📝 Text file read: {len(content)} characters")
return content[:10000] + ("..." if len(content) > 10000 else "")
except Exception as e:
logger.error(f"❌ Text file reading error: {e}")
return f"❌ Text file reading failed: {e}"
def extract_archive(self, file_path: str) -> str:
"""📦 Extract and list archive contents (ZIP, RAR, etc.)"""
try:
import zipfile
import os
if file_path.endswith('.zip'):
with zipfile.ZipFile(file_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
extract_dir = os.path.join(os.path.dirname(file_path), 'extracted')
os.makedirs(extract_dir, exist_ok=True)
zip_ref.extractall(extract_dir)
result = f"📦 ZIP archive extracted to {extract_dir}\n"
result += f"Contents ({len(file_list)} files):\n"
result += "\n".join(file_list[:20])
if len(file_list) > 20:
result += f"\n... (showing first 20 of {len(file_list)} files)"
logger.info(f"📦 ZIP extracted: {len(file_list)} files")
return result
else:
return f"❌ Unsupported archive format: {file_path}"
except Exception as e:
logger.error(f"❌ Archive extraction error: {e}")
return f"❌ Archive extraction failed: {e}"
# === ENHANCED WEB BROWSING ===
def browse_with_js(self, url: str) -> str:
"""🌐 Enhanced web browsing with JavaScript support (when available)"""
try:
# Try playwright for dynamic content
from playwright.sync_api import sync_playwright
with sync_playwright() as p:
browser = p.chromium.launch(headless=True)
page = browser.new_page()
page.goto(url, timeout=15000)
page.wait_for_timeout(2000) # Wait for JS to load
content = page.content()
browser.close()
# Parse content
from bs4 import BeautifulSoup
soup = BeautifulSoup(content, 'html.parser')
# Remove scripts and styles
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
# Clean up whitespace
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
clean_text = ' '.join(chunk for chunk in chunks if chunk)
logger.info(f"🌐 JS-enabled browsing: {url} - {len(clean_text)} chars")
return clean_text[:5000] + ("..." if len(clean_text) > 5000 else "")
except ImportError:
logger.info("⚠️ Playwright not available, falling back to requests")
return self.browse_url(url)
except Exception as e:
logger.warning(f"⚠️ JS browsing failed: {e}, falling back to basic")
return self.browse_url(url)
# === ENHANCED GAIA FILE HANDLING ===
def download_gaia_file(self, task_id: str, file_name: str = None) -> str:
"""📥 Enhanced GAIA file download with comprehensive format support"""
try:
# GAIA API endpoint for file downloads
api_base = "https://agents-course-unit4-scoring.hf.space"
file_url = f"{api_base}/files/{task_id}"
logger.info(f"📥 Downloading GAIA file for task: {task_id}")
headers = {
'User-Agent': 'GAIA-Agent/1.0 (Enhanced)',
'Accept': '*/*',
'Accept-Encoding': 'gzip, deflate',
}
response = requests.get(file_url, headers=headers, timeout=30, stream=True)
if response.status_code == 200:
# Determine file extension from headers or filename
content_type = response.headers.get('content-type', '')
content_disposition = response.headers.get('content-disposition', '')
# Extract filename from Content-Disposition header
if file_name:
filename = file_name
elif 'filename=' in content_disposition:
filename = content_disposition.split('filename=')[1].strip('"\'')
else:
# Guess extension from content type
extension_map = {
'image/jpeg': '.jpg',
'image/png': '.png',
'image/gif': '.gif',
'application/pdf': '.pdf',
'text/plain': '.txt',
'application/json': '.json',
'text/csv': '.csv',
'application/vnd.ms-excel': '.xlsx',
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': '.xlsx',
'application/msword': '.docx',
'video/mp4': '.mp4',
'audio/mpeg': '.mp3',
'audio/wav': '.wav',
'application/zip': '.zip',
}
extension = extension_map.get(content_type, '.tmp')
filename = f"gaia_file_{task_id}{extension}"
# Save file
import tempfile
import os
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
with open(filepath, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
file_size = os.path.getsize(filepath)
logger.info(f"📥 GAIA file downloaded: {filepath} ({file_size} bytes)")
# Automatically process based on file type
return self.process_downloaded_file(filepath, task_id)
else:
error_msg = f"❌ GAIA file download failed: HTTP {response.status_code}"
logger.error(error_msg)
return error_msg
except Exception as e:
error_msg = f"❌ GAIA file download error: {e}"
logger.error(error_msg)
return error_msg
def process_downloaded_file(self, filepath: str, task_id: str) -> str:
"""📋 Process downloaded GAIA files based on their type"""
try:
import os
filename = os.path.basename(filepath)
file_ext = os.path.splitext(filename)[1].lower()
logger.info(f"📋 Processing GAIA file: {filename} (type: {file_ext})")
result = f"📁 GAIA File: {filename} (Task: {task_id})\n\n"
# Process based on file type
if file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
# Image file
image_result = self.analyze_image(filepath, "Describe this image in detail")
result += f"🖼️ Image Analysis:\n{image_result}\n"
elif file_ext == '.pdf':
# PDF document
pdf_content = self.read_pdf(filepath)
result += f"📄 PDF Content:\n{pdf_content}\n"
elif file_ext in ['.txt', '.md', '.py', '.js', '.html', '.css']:
# Text files
text_content = self.read_text_file(filepath)
result += f"📝 Text Content:\n{text_content}\n"
elif file_ext in ['.csv']:
# CSV files
csv_content = self.read_csv(filepath)
result += f"📊 CSV Data:\n{csv_content}\n"
elif file_ext in ['.xlsx', '.xls']:
# Excel files
excel_content = self.read_excel(filepath)
result += f"📈 Excel Data:\n{excel_content}\n"
elif file_ext in ['.docx']:
# Word documents
docx_content = self.read_docx(filepath)
result += f"📄 Word Document:\n{docx_content}\n"
elif file_ext in ['.mp4', '.avi', '.mov', '.wmv']:
# Video files
video_result = self.process_video(filepath, "analyze")
result += f"🎥 Video Analysis:\n{video_result}\n"
elif file_ext in ['.mp3', '.wav', '.m4a', '.flac']:
# Audio files
audio_result = self.analyze_audio(filepath, "transcribe")
result += f"🎵 Audio Analysis:\n{audio_result}\n"
elif file_ext in ['.zip', '.rar']:
# Archive files
archive_result = self.extract_archive(filepath)
result += f"📦 Archive Contents:\n{archive_result}\n"
elif file_ext in ['.json']:
# JSON files
try:
import json
with open(filepath, 'r') as f:
json_data = json.load(f)
result += f"📋 JSON Data:\n{json.dumps(json_data, indent=2)[:2000]}\n"
except Exception as e:
result += f"❌ JSON parsing error: {e}\n"
else:
# Unknown file type - try as text
try:
text_content = self.read_text_file(filepath)
result += f"📄 Raw Content:\n{text_content}\n"
except:
result += f"❌ Unsupported file type: {file_ext}\n"
# Add file metadata
file_size = os.path.getsize(filepath)
result += f"\n📊 File Info: {file_size} bytes, Path: {filepath}"
return result
except Exception as e:
error_msg = f"❌ File processing error: {e}"
logger.error(error_msg)
return error_msg
# === ENHANCED REASONING CHAIN ===
def reasoning_chain(self, question: str, max_steps: int = 5) -> str:
"""🧠 Explicit step-by-step reasoning for complex GAIA questions"""
try:
logger.info(f"🧠 Starting reasoning chain for: {question[:50]}...")
reasoning_steps = []
current_context = question
for step in range(1, max_steps + 1):
logger.info(f"🧠 Reasoning step {step}/{max_steps}")
# Analyze what we need to do next
analysis_prompt = f"""Analyze this question step by step:
Question: {question}
Previous context: {current_context}
What is the next logical step to solve this question? Be specific about:
1. What information do we need?
2. What tool should we use?
3. What specific action to take?
Respond with just the next action needed."""
# Get next step from our best model
next_step = self.fast_qa_answer(analysis_prompt)
reasoning_steps.append(f"Step {step}: {next_step}")
# Execute the step if it mentions a specific tool
if any(tool in next_step.lower() for tool in ['search', 'download', 'calculate', 'analyze', 'read']):
# Extract and execute tool call
if 'search' in next_step.lower():
search_query = self._extract_search_query(next_step, question)
if search_query:
search_result = self.web_search(search_query)
current_context += f"\n\nSearch result: {search_result[:500]}"
reasoning_steps.append(f" → Executed search: {search_result[:100]}...")
elif 'calculate' in next_step.lower():
calc_expr = self._extract_calculation(next_step, question)
if calc_expr:
calc_result = self.calculator(calc_expr)
current_context += f"\n\nCalculation: {calc_expr} = {calc_result}"
reasoning_steps.append(f" → Calculated: {calc_expr} = {calc_result}")
# Check if we have enough information
if self._has_sufficient_info(current_context, question):
reasoning_steps.append(f"Step {step + 1}: Sufficient information gathered")
break
# Generate final answer
final_prompt = f"""Based on this reasoning chain, provide the final answer:
Question: {question}
Reasoning steps:
{chr(10).join(reasoning_steps)}
Context: {current_context}
Provide ONLY the final answer - no explanation."""
final_answer = self.fast_qa_answer(final_prompt)
logger.info(f"🧠 Reasoning chain complete: {len(reasoning_steps)} steps")
return final_answer
except Exception as e:
logger.error(f"❌ Reasoning chain error: {e}")
return self.query_with_tools(question) # Fallback to regular processing
def _extract_search_query(self, step_text: str, question: str) -> str:
"""Extract search query from reasoning step"""
# Simple extraction logic
if 'search for' in step_text.lower():
parts = step_text.lower().split('search for')[1].split('.')[0]
return parts.strip(' "\'')
return None
def _extract_calculation(self, step_text: str, question: str) -> str:
"""Extract calculation from reasoning step"""
import re
# Look for mathematical expressions
math_patterns = [
r'[\d+\-*/().\s]+',
r'\d+\s*[+\-*/]\s*\d+',
]
for pattern in math_patterns:
matches = re.findall(pattern, step_text)
if matches:
return matches[0].strip()
return None
def _has_sufficient_info(self, context: str, question: str) -> bool:
"""Check if we have sufficient information to answer"""
# Simple heuristic - check if context is substantially longer than question
return len(context) > len(question) * 3 and len(context) > 200
# === ENHANCED TOOL ENUMERATION ===
# === MAIN SYSTEM CLASSES ===
class EnhancedMultiModelGAIASystem:
"""🚀 Complete GAIA system with advanced tool calling and multi-modal capabilities"""
def __init__(self, hf_token: str = None, openai_key: str = None):
# Initialize enhanced toolkit
self.toolkit = UniversalMultimodalToolkit(hf_token, openai_key)
# Initialize AI clients
self.hf_token = hf_token or os.getenv('HF_TOKEN')
self.openai_key = openai_key or os.getenv('OPENAI_API_KEY')
# 🚀 SPEED OPTIMIZATION: Response cache for instant answers
self.response_cache = {}
self.qa_cache = {}
# Initialize clients with comprehensive model support
self.clients = self._initialize_clients()
# 🎯 PRIORITY ORDER: Qwen3-235B-A22B as TOP model for best performance
available_models = list(self.clients.keys())
# Preferred order (only include models that are actually available)
preferred_order = [
"fireworks_qwen3_235b", # 🥇 PRIORITY 1: Qwen3-235B-A22B (Best reasoning)
"together_deepseek_r1", # 🥈 PRIORITY 2: DeepSeek-R1 (Strong reasoning)
"openai_gpt4o", # 🥉 PRIORITY 3: GPT-4o (Vision capabilities)
"together_llama", # PRIORITY 4: Llama-3.3-70B (Large context)
"novita_minimax", # PRIORITY 5: MiniMax (Extended context)
"featherless_kimi", # PRIORITY 6: Moonshot (Specialized tasks)
"fallback_basic" # PRIORITY 7: Local fallback
]
# Only include available models in priority list
self.model_priority = [model for model in preferred_order if model in available_models]
if not self.model_priority:
logger.error("❌ No models available for processing")
else:
logger.info(f"🎯 Model priority: {self.model_priority[0]} (top priority)")
logger.info("🚀 Enhanced Multi-Model GAIA System initialized")
def _initialize_clients(self) -> Dict[str, Any]:
"""Initialize all AI model clients with SPEED OPTIMIZATION for 100% GAIA performance"""
clients = {}
if self.hf_token and HF_AVAILABLE:
# 🚀 ULTRA-FAST QA MODEL (Priority 0 - for instant answers)
clients["ultra_fast_qa"] = {
"client": InferenceClient(
provider="hf-inference",
api_key=self.hf_token,
),
"model": "deepset/roberta-base-squad2",
"priority": 0,
"provider": "HuggingFace QA",
"type": "question_answering",
"speed": "ultra_fast",
"use_for": ["factual", "simple", "direct"]
}
# ⚡ FAST BERT QA (Priority 0.5)
clients["fast_bert_qa"] = {
"client": InferenceClient(
provider="hf-inference",
api_key=self.hf_token,
),
"model": "deepset/bert-base-cased-squad2",
"priority": 0.5,
"provider": "HuggingFace QA",
"type": "question_answering",
"speed": "very_fast",
"use_for": ["reading_comprehension", "context_based"]
}
# 🔥 Together AI models (Priority: DeepSeek-R1)
clients["together_deepseek_r1"] = {
"client": InferenceClient(model="deepseek-ai/DeepSeek-R1", token=self.hf_token),
"priority": 1,
"provider": "Together AI",
"type": "chat",
"speed": "fast"
}
clients["together_llama"] = {
"client": InferenceClient(model="meta-llama/Llama-3.3-70B-Instruct", token=self.hf_token),
"priority": 2,
"provider": "Together AI",
"type": "chat",
"speed": "medium"
}
# 🌟 Novita AI models (Enhanced Speed)
clients["novita_minimax"] = {
"client": InferenceClient(model="MiniMax/MiniMax-M1-80k", token=self.hf_token),
"priority": 3,
"provider": "Novita AI",
"type": "chat",
"speed": "fast"
}
clients["novita_deepseek_chat"] = {
"client": InferenceClient(model="deepseek-ai/deepseek-chat", token=self.hf_token),
"priority": 4,
"provider": "Novita AI",
"type": "chat",
"speed": "fast"
}
# 🪶 Featherless AI models
clients["featherless_kimi"] = {
"client": InferenceClient(model="moonshot-ai/moonshot-v1-8k", token=self.hf_token),
"priority": 5,
"provider": "Featherless AI",
"type": "chat",
"speed": "medium"
}
clients["featherless_jan"] = {
"client": InferenceClient(model="janhq/jan-nano", token=self.hf_token),
"priority": 6,
"provider": "Featherless AI",
"type": "chat",
"speed": "very_fast"
}
# 🚀 Fireworks AI models - TOP PRIORITY MODEL
clients["fireworks_qwen3_235b"] = {
"client": InferenceClient(
provider="fireworks-ai",
api_key=self.hf_token,
),
"model": "Qwen/Qwen3-235B-A22B",
"priority": 0.1, # 🥇 HIGHEST PRIORITY - Best reasoning model
"provider": "Fireworks AI",
"type": "chat",
"speed": "fast"
}
clients["fireworks_llama"] = {
"client": InferenceClient(model="accounts/fireworks/models/llama-v3p1-8b-instruct", token=self.hf_token),
"priority": 7,
"provider": "Fireworks AI",
"type": "chat",
"speed": "very_fast"
}
# 🤗 HuggingFace Inference models (Specialized)
clients["hf_mistral"] = {
"client": InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.1", token=self.hf_token),
"priority": 8,
"provider": "HuggingFace",
"type": "chat",
"speed": "fast"
}
clients["hf_phi"] = {
"client": InferenceClient(model="microsoft/Phi-3-mini-4k-instruct", token=self.hf_token),
"priority": 9,
"provider": "HuggingFace",
"type": "chat",
"speed": "ultra_fast"
}
# 🤖 OpenAI models (if API key available)
if self.openai_key and OPENAI_AVAILABLE:
clients["openai_gpt4o"] = {
"client": "openai_gpt4o",
"model": "gpt-4o",
"priority": 1.5,
"provider": "OpenAI",
"type": "chat",
"speed": "medium"
}
clients["openai_gpt35"] = {
"client": "openai_gpt35",
"model": "gpt-3.5-turbo",
"priority": 10,
"provider": "OpenAI",
"type": "chat",
"speed": "fast"
}
# 🛡️ Fallback client for when external services are unavailable
if not clients:
clients["fallback_basic"] = {
"client": "fallback",
"model": "basic",
"priority": 999,
"provider": "Local Fallback",
"type": "fallback",
"speed": "instant"
}
logger.warning("⚠️ No external AI services available, using fallback mode")
logger.info(f"✅ Initialized {len(clients)} AI clients with speed optimization")
return clients
def parse_tool_calls(self, response: str) -> List[ToolCall]:
"""🔧 Parse advanced tool calls from AI response"""
tool_calls = []
# Enhanced patterns for tool calls
patterns = [
r'TOOL_CALL:\s*(\w+)\((.*?)\)', # TOOL_CALL: web_search(query="...")
r'<tool>(\w+)</tool>\s*<params>(.*?)</params>', # XML-style
r'```(\w+)\n(.*?)\n```', # Code block style
]
for pattern in patterns:
matches = re.findall(pattern, response, re.DOTALL | re.IGNORECASE)
for tool_name, params_str in matches:
try:
params = self._parse_parameters(params_str)
tool_type = ToolType(tool_name.lower())
tool_calls.append(ToolCall(tool=tool_type, parameters=params))
logger.info(f"🔧 Parsed tool call: {tool_name} with params: {params}")
except (ValueError, Exception) as e:
logger.warning(f"⚠️ Failed to parse tool call {tool_name}: {e}")
return tool_calls
def _parse_parameters(self, params_str: str) -> Dict[str, Any]:
"""Parse parameters from various formats"""
params = {}
if not params_str.strip():
return params
# Try JSON parsing first
try:
return json.loads(params_str)
except:
pass
# Try key=value parsing
param_matches = re.findall(r'(\w+)=(["\'])(.*?)\2', params_str)
for param_name, quote, param_value in param_matches:
params[param_name] = param_value
# Try simple text for single parameter
if not params and params_str.strip():
# Remove quotes if present
clean_param = params_str.strip().strip('"\'')
params['query'] = clean_param # Default to query parameter
return params
def execute_tool_call(self, tool_call: ToolCall) -> str:
"""⚡ Execute a single tool call with comprehensive error handling"""
try:
logger.info(f"⚡ Executing {tool_call.tool.value} with params: {tool_call.parameters}")
if tool_call.tool == ToolType.WEB_SEARCH:
query = tool_call.parameters.get('query', '')
results = self.toolkit.web_search(query)
return f"🔍 Web search results:\n{results}"
elif tool_call.tool == ToolType.BROWSE_URL:
url = tool_call.parameters.get('url', '')
result = self.toolkit.browse_url(url)
return result
elif tool_call.tool == ToolType.DOWNLOAD_FILE:
task_id = tool_call.parameters.get('task_id', '')
url = tool_call.parameters.get('url', '')
filepath = self.toolkit.download_file(url, task_id)
return f"📥 Downloaded file to: {filepath}"
elif tool_call.tool == ToolType.READ_PDF:
file_path = tool_call.parameters.get('file_path', '')
text = self.toolkit.read_pdf(file_path)
return f"📄 PDF content:\n{text}"
elif tool_call.tool == ToolType.ANALYZE_IMAGE:
image_path = tool_call.parameters.get('image_path', '')
question = tool_call.parameters.get('question', '')
result = self.toolkit.analyze_image(image_path, question)
return f"🖼️ Image analysis: {result}"
elif tool_call.tool == ToolType.CALCULATOR:
expression = tool_call.parameters.get('expression', '')
result = self.toolkit.calculator(expression)
return f"🧮 Calculation result: {result}"
elif tool_call.tool == ToolType.PROCESS_VIDEO:
video_path = tool_call.parameters.get('video_path', '')
task = tool_call.parameters.get('task', 'analyze')
result = self.toolkit.process_video(video_path, task)
return f"🎥 Video analysis: {result}"
elif tool_call.tool == ToolType.ANALYZE_AUDIO:
audio_path = tool_call.parameters.get('audio_path', '')
task = tool_call.parameters.get('task', 'analyze')
result = self.toolkit.analyze_audio(audio_path, task)
return f"🎵 Audio analysis: {result}"
elif tool_call.tool == ToolType.GENERATE_IMAGE:
prompt = tool_call.parameters.get('prompt', '')
style = tool_call.parameters.get('style', 'realistic')
result = self.toolkit.generate_image(prompt, style)
return f"🎨 Image generation: {result}"
elif tool_call.tool == ToolType.SYNTHESIZE_SPEECH:
text = tool_call.parameters.get('text', '')
voice = tool_call.parameters.get('voice', 'default')
result = self.toolkit.synthesize_speech(text, voice)
return f"🎙️ Speech synthesis: {result}"
elif tool_call.tool == ToolType.CREATE_VISUALIZATION:
data = tool_call.parameters.get('data', {})
chart_type = tool_call.parameters.get('chart_type', 'bar')
result = self.toolkit.create_visualization(data, chart_type)
return f"📊 Data visualization: {result}"
elif tool_call.tool == ToolType.ANALYZE_DATA:
data = tool_call.parameters.get('data', {})
operation = tool_call.parameters.get('operation', 'statistics')
result = self.toolkit.scientific_compute(operation, data)
return f"🧬 Scientific computation: {result}"
elif tool_call.tool == ToolType.GENERATE_VIDEO:
video_path = tool_call.parameters.get('video_path', '')
result = self.toolkit.process_video(video_path, 'generate')
return f"🎬 Video generation: {result}"
elif tool_call.tool == ToolType.EXTRACT_AUDIO:
audio_path = tool_call.parameters.get('audio_path', '')
result = self.toolkit.analyze_audio(audio_path, 'extract')
return f"🎵 Audio extraction: {result}"
elif tool_call.tool == ToolType.TRANSCRIBE_SPEECH:
audio_path = tool_call.parameters.get('audio_path', '')
result = self.toolkit.transcribe_speech(audio_path)
return f"🎙️ Speech transcription: {result}"
elif tool_call.tool == ToolType.DETECT_OBJECTS:
image_path = tool_call.parameters.get('image_path', '')
result = self.toolkit.detect_objects(image_path)
return f"🔍 Object detection: {result}"
elif tool_call.tool == ToolType.FACE_RECOGNITION:
image_path = tool_call.parameters.get('image_path', '')
result = self.toolkit.analyze_image(image_path, "Identify the person in this image")
return f"👤 Face recognition: {result}"
elif tool_call.tool == ToolType.SCIENTIFIC_COMPUTE:
operation = tool_call.parameters.get('operation', 'statistics')
data = tool_call.parameters.get('data', {})
result = self.toolkit.scientific_compute(operation, data)
return f"🧬 Scientific computation: {result}"
else:
return f"❌ Unknown tool: {tool_call.tool}"
except Exception as e:
error_msg = f"❌ Tool execution failed: {str(e)}"
logger.error(error_msg)
return error_msg
def fast_qa_answer(self, question: str, context: str = "") -> str:
"""🚀 Ultra-fast question answering using optimized models"""
try:
# Check cache first
cache_key = hashlib.md5(f"{question}:{context}".encode()).hexdigest()
if cache_key in self.qa_cache:
logger.info("🚀 Cache hit - instant answer!")
return self.qa_cache[cache_key]
# Try ultra-fast QA model first
if "ultra_fast_qa" in self.clients:
try:
client_info = self.clients["ultra_fast_qa"]
client = client_info["client"]
# Use question-answering endpoint with correct model parameter
if context:
result = client.question_answering(
question=question,
context=context,
model=client_info["model"]
)
answer = result.get("answer", "").strip()
else:
# For questions without context, use web search for context
search_result = self.toolkit.web_search(question, num_results=2)
result = client.question_answering(
question=question,
context=search_result[:500],
model=client_info["model"]
)
answer = result.get("answer", "").strip()
if answer:
# Cache the result
self.qa_cache[cache_key] = answer
return answer
except Exception as e:
logger.warning(f"⚠️ Fast QA failed: {e}")
# Fallback to regular processing
return None
except Exception as e:
logger.error(f"❌ Fast QA error: {e}")
return None
def query_with_tools(self, question: str, model_name: str = None, max_iterations: int = 3) -> str:
"""🧠 Enhanced query processing with SPEED-OPTIMIZED capabilities for 100% GAIA performance"""
# 🚀 FIRST: Try ultra-fast QA for instant answers
fast_answer = self.fast_qa_answer(question)
if fast_answer:
logger.info("⚡ Ultra-fast QA answer found!")
return self._clean_final_answer(fast_answer)
# Check response cache
cache_key = hashlib.md5(question.encode()).hexdigest()
if cache_key in self.response_cache:
logger.info("🚀 Cache hit - instant answer!")
return self.response_cache[cache_key]
if not model_name:
model_name = self.model_priority[0]
logger.info(f"🧠 Processing question with {model_name}: {question[:100]}...")
# Ultra-enhanced system prompt for GAIA benchmark
system_prompt = f"""You are an advanced AI agent optimized for the GAIA benchmark with access to powerful tools.
🛠️ AVAILABLE TOOLS:
- TOOL_CALL: web_search(query="search term") - Search the web for current information
- TOOL_CALL: browse_url(url="https://example.com") - Browse and extract content from specific URLs
- TOOL_CALL: download_file(task_id="123") - Download files from GAIA tasks or URLs
- TOOL_CALL: read_pdf(file_path="document.pdf") - Read and extract text from PDF files
- TOOL_CALL: analyze_image(image_path="image.jpg", question="what to analyze") - Analyze images with vision AI
- TOOL_CALL: calculator(expression="2+2*3") - Perform mathematical calculations and scientific functions
- TOOL_CALL: process_video(video_path="video.mp4", task="analyze") - Analyze video content
- TOOL_CALL: analyze_audio(audio_path="audio.wav", task="analyze") - Analyze audio content
- TOOL_CALL: generate_image(prompt="description", style="realistic") - Generate images from text descriptions
- TOOL_CALL: synthesize_speech(text="Hello, world!", voice="default") - Convert text to speech
- TOOL_CALL: create_visualization(data="chart_data", chart_type="bar") - Create data visualizations and charts
- TOOL_CALL: analyze_data(data="statistical_data") - Perform scientific computations and analysis
- TOOL_CALL: generate_video(video_path="output.mp4") - Generate videos from video content
- TOOL_CALL: extract_audio(audio_path="audio.wav") - Extract audio from video content
- TOOL_CALL: transcribe_speech(audio_path="audio.wav") - Convert speech to text
- TOOL_CALL: detect_objects(image_path="image.jpg") - Detect and identify objects in images
- TOOL_CALL: face_recognition(image_path="image.jpg") - Identify the person in images
- TOOL_CALL: scientific_compute(operation="statistics", data="numerical_data") - Perform scientific computations and analysis
🎯 GAIA BENCHMARK INSTRUCTIONS:
1. For research questions, ALWAYS use web_search first to get current information
2. If files are mentioned or task IDs given, use download_file then read_pdf/analyze_image
3. For multi-step problems, break down systematically and use tools in logical order
4. For image questions, use analyze_image with specific question about what to find
5. CRITICAL: Provide DIRECT, CONCISE answers ONLY - no explanations or reasoning
6. Format response as just the final answer - nothing else
Question: {question}
Think step by step about what tools you need, use them, then provide ONLY the final answer."""
conversation_history = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": question}
]
# Iterative tool calling loop
for iteration in range(max_iterations):
try:
client_info = self.clients.get(model_name)
if not client_info:
logger.warning(f"⚠️ Model {model_name} unavailable, using fallback")
return self._fallback_response(question)
# Handle fallback client
if model_name == "fallback_basic":
logger.info("🛡️ Using local fallback processing")
return self._fallback_response(question)
# Get AI response
if "openai" in model_name:
response = client_info["client"].chat.completions.create(
model=client_info["model"],
messages=conversation_history,
max_tokens=1500,
temperature=0.0
)
ai_response = response.choices[0].message.content
elif model_name == "fireworks_qwen3_235b":
# Use the specific Qwen model implementation
response = client_info["client"].chat.completions.create(
model=client_info["model"],
messages=conversation_history,
max_tokens=1500,
temperature=0.0
)
ai_response = response.choices[0].message.content
else:
response = client_info["client"].chat_completion(
messages=conversation_history,
max_tokens=1500,
temperature=0.0
)
ai_response = response.choices[0].message.content
# Clean thinking process from response (critical for GAIA compliance)
ai_response = self._remove_thinking_process(ai_response)
logger.info(f"🤖 AI Response (iteration {iteration + 1}): {ai_response[:200]}...")
# Check for tool calls
tool_calls = self.parse_tool_calls(ai_response)
if tool_calls:
# Execute tools and collect results
tool_results = []
for tool_call in tool_calls:
result = self.execute_tool_call(tool_call)
tool_results.append(f"Tool {tool_call.tool.value}: {result}")
# Add tool results to conversation
conversation_history.append({"role": "assistant", "content": ai_response})
tool_context = f"TOOL RESULTS:\n" + "\n\n".join(tool_results)
tool_context += f"\n\nBased on these tool results, provide the final answer to: {question}\nProvide ONLY the direct answer - no explanations:"
conversation_history.append({"role": "user", "content": tool_context})
logger.info(f"🔧 Executed {len(tool_calls)} tools, continuing to iteration {iteration + 2}")
else:
# No tools needed, extract final answer
final_answer = self._extract_final_answer(ai_response)
logger.info(f"✅ Final answer extracted: {final_answer}")
return final_answer
except Exception as e:
logger.error(f"❌ Query iteration {iteration + 1} failed for {model_name}: {e}")
# Try next model in priority list
current_index = self.model_priority.index(model_name) if model_name in self.model_priority else 0
if current_index + 1 < len(self.model_priority):
model_name = self.model_priority[current_index + 1]
logger.info(f"🔄 Switching to model: {model_name}")
else:
break
# Final attempt with tool results if we have them
if len(conversation_history) > 2:
try:
client_info = self.clients.get(model_name)
if client_info:
if "openai" in model_name:
final_response = client_info["client"].chat.completions.create(
model=client_info["model"],
messages=conversation_history,
max_tokens=300,
temperature=0.0
)
final_answer = final_response.choices[0].message.content
else:
final_response = client_info["client"].chat_completion(
messages=conversation_history,
max_tokens=300,
temperature=0.0
)
final_answer = final_response.choices[0].message.content
return self._extract_final_answer(final_answer)
except Exception as e:
logger.error(f"❌ Final answer extraction failed: {e}")
# Ultimate fallback
logger.warning(f"⚠️ Using fallback response for: {question}")
return self._fallback_response(question)
def _extract_final_answer(self, response: str) -> str:
"""✨ Ultra-aggressive answer extraction for perfect GAIA compliance"""
if not response:
return "Unknown"
logger.info(f"✨ Extracting final answer from: {response[:100]}...")
# Remove tool calls completely
response = re.sub(r'TOOL_CALL:.*?\n', '', response, flags=re.DOTALL)
response = re.sub(r'<tool>.*?</tool>', '', response, flags=re.DOTALL | re.IGNORECASE)
response = re.sub(r'<params>.*?</params>', '', response, flags=re.DOTALL | re.IGNORECASE)
# Remove thinking blocks aggressively
response = re.sub(r'<think>.*?</think>', '', response, flags=re.DOTALL | re.IGNORECASE)
response = re.sub(r'\*\*Think\*\*.*?\*\*Answer\*\*', '', response, flags=re.DOTALL | re.IGNORECASE)
# Remove reasoning phrases more comprehensively
reasoning_patterns = [
r'let me.*?[.!?]\s*',
r'i need to.*?[.!?]\s*',
r'first,?\s*i.*?[.!?]\s*',
r'to solve this.*?[.!?]\s*',
r'based on.*?[,.]?\s*',
r'the answer is[:\s]*',
r'therefore[,:\s]*',
r'so[,:\s]*the answer[,:\s]*',
r'thus[,:\s]*',
r'in conclusion[,:\s]*',
r'after.*?analysis[,:\s]*',
r'from.*?search[,:\s]*'
]
for pattern in reasoning_patterns:
response = re.sub(pattern, '', response, flags=re.IGNORECASE)
# Extract core answer patterns
answer_patterns = [
r'(?:answer|result)[:\s]*([^\n.!?]+)',
r'(?:final|conclusion)[:\s]*([^\n.!?]+)',
r'^([A-Z][^.!?]*)', # First capitalized sentence
r'(\d+(?:\.\d+)?)', # Numbers
r'([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)' # Proper nouns
]
for pattern in answer_patterns:
match = re.search(pattern, response, re.IGNORECASE)
if match:
answer = match.group(1).strip()
if len(answer) > 2: # Avoid single characters
return self._clean_final_answer(answer)
# Take the last substantial line
lines = [line.strip() for line in response.split('\n') if line.strip()]
if lines:
# Filter out obvious non-answers
for line in reversed(lines):
if len(line) > 2 and not any(word in line.lower() for word in ['tool', 'search', 'analysis', 'extract']):
return self._clean_final_answer(line)
# Final cleanup of the entire response
return self._clean_final_answer(response.strip())
def _remove_thinking_process(self, response: str) -> str:
"""🧠 Remove thinking process from responses to ensure only final answers"""
try:
# Remove common thinking indicators
thinking_patterns = [
r'<thinking>.*?</thinking>',
r'<reasoning>.*?</reasoning>',
r'<analysis>.*?</analysis>',
r'Let me think.*?(?=\n\n|\.|$)',
r'I need to.*?(?=\n\n|\.|$)',
r'First, I.*?(?=\n\n|\.|$)',
r'Step \d+:.*?(?=\n|\.|$)',
r'Thinking step by step.*?(?=\n\n|\.|$)',
r'^.*?Let me analyze.*?(?=\n\n)',
r'^.*?I should.*?(?=\n\n)',
r'To solve this.*?(?=\n\n)',
]
cleaned = response
for pattern in thinking_patterns:
cleaned = re.sub(pattern, '', cleaned, flags=re.DOTALL | re.IGNORECASE)
# Remove multiple newlines and clean up
cleaned = re.sub(r'\n\s*\n', '\n', cleaned).strip()
# If response starts with reasoning words, extract the final answer
if any(cleaned.lower().startswith(word) for word in ['let me', 'first', 'i need to', 'to solve', 'thinking']):
# Look for final answer patterns
final_patterns = [
r'(?:the answer is|answer:|final answer:|therefore|so|thus|hence)[:\s]*(.+?)(?:\.|$)',
r'(?:^|\n)([^.\n]+?)(?:\.|$)' # Last sentence
]
for pattern in final_patterns:
match = re.search(pattern, cleaned, re.IGNORECASE | re.MULTILINE)
if match:
potential_answer = match.group(1).strip()
if potential_answer and len(potential_answer) < 200: # Reasonable answer length
return potential_answer
return cleaned
except Exception as e:
logger.warning(f"⚠️ Error removing thinking process: {e}")
return response
def _clean_final_answer(self, answer: str) -> str:
"""🧹 Enhanced answer cleaning that preserves meaning and completeness"""
if not answer:
return "Unable to determine answer"
# Quality validation - reject broken/incomplete responses
answer = answer.strip()
# Reject clearly broken responses but allow valid short answers
broken_patterns = [
r'^s,?\s*$', # Just "s," or "s"
r'^s\s+\w+$', # "s something"
r'^(think|right|Unable to)$', # Single incomplete words
r'^Jagged$', # Random single words
]
# Don't reject numbers or valid single words
if answer.isdigit() or answer.replace('.', '').replace('-', '').isdigit():
# Valid number - keep it
pass
elif len(answer) == 1 and answer.isalpha():
# Single letter might be valid (like "A", "B" for multiple choice)
pass
else:
# Apply broken pattern checks for other cases
for pattern in broken_patterns:
if re.match(pattern, answer, re.IGNORECASE):
return "Unable to provide complete answer"
# Remove common prefixes but preserve content
prefixes = ['answer:', 'result:', 'final:', 'conclusion:', 'the answer is', 'it is', 'this is']
for prefix in prefixes:
if answer.lower().startswith(prefix):
answer = answer[len(prefix):].strip()
# Remove tool call artifacts
answer = re.sub(r'^TOOL_CALL:.*$', '', answer, flags=re.MULTILINE)
answer = re.sub(r'from \d+ tool calls?', '', answer)
# Clean whitespace but preserve structure
answer = re.sub(r'\s+', ' ', answer).strip()
# Remove quotes if they wrap the entire answer
if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
answer = answer[1:-1]
# Final validation - but allow valid single character answers
if len(answer) < 1:
return "Unable to provide complete answer"
elif len(answer) == 1:
# Single character is OK if it's a digit or capital letter
if answer.isdigit() or answer.isupper():
return answer.strip()
else:
return "Unable to provide complete answer"
return answer.strip()
def _fallback_response(self, question: str) -> str:
"""🛡️ Enhanced fallback responses optimized for GAIA benchmark"""
question_lower = question.lower()
logger.info(f"🛡️ Using enhanced fallback for: {question[:50]}...")
# Enhanced mathematical operations
if any(word in question_lower for word in ['calculate', 'compute', 'math', '+', '-', '*', '/', 'sum', 'product']):
numbers = re.findall(r'-?\d+(?:\.\d+)?', question)
if len(numbers) >= 2:
try:
a, b = float(numbers[0]), float(numbers[1])
if '+' in question or 'add' in question_lower or 'sum' in question_lower:
return str(int(a + b) if (a + b).is_integer() else a + b)
elif '-' in question or 'subtract' in question_lower or 'minus' in question_lower:
return str(int(a - b) if (a - b).is_integer() else a - b)
elif '*' in question or 'multiply' in question_lower or 'times' in question_lower or 'product' in question_lower:
return str(int(a * b) if (a * b).is_integer() else a * b)
elif '/' in question or 'divide' in question_lower:
return str(int(a / b) if (a / b).is_integer() else round(a / b, 6))
except:
pass
# Enhanced geography and capitals
if any(word in question_lower for word in ['capital', 'country', 'city']):
capitals = {
'france': 'Paris', 'germany': 'Berlin', 'italy': 'Rome', 'spain': 'Madrid',
'japan': 'Tokyo', 'china': 'Beijing', 'usa': 'Washington D.C.', 'united states': 'Washington D.C.',
'uk': 'London', 'united kingdom': 'London', 'canada': 'Ottawa', 'australia': 'Canberra',
'brazil': 'Brasília', 'india': 'New Delhi', 'russia': 'Moscow', 'mexico': 'Mexico City'
}
for country, capital in capitals.items():
if country in question_lower:
return capital
# Enhanced political and current affairs
if 'president' in question_lower:
if any(country in question_lower for country in ['united states', 'usa', 'america']):
return 'Joe Biden'
elif 'france' in question_lower:
return 'Emmanuel Macron'
elif 'russia' in question_lower:
return 'Vladimir Putin'
# Enhanced counting questions
if 'how many' in question_lower:
counting_map = {
'planets': '8', 'continents': '7', 'days in year': '365', 'days in week': '7',
'months': '12', 'seasons': '4', 'oceans': '5', 'great lakes': '5'
}
for item, count in counting_map.items():
if item in question_lower:
return count
# Enhanced scientific formulas
if 'chemical formula' in question_lower or 'formula' in question_lower:
formulas = {
'water': 'H2O', 'carbon dioxide': 'CO2', 'methane': 'CH4', 'ammonia': 'NH3',
'salt': 'NaCl', 'sugar': 'C12H22O11', 'alcohol': 'C2H5OH', 'oxygen': 'O2'
}
for compound, formula in formulas.items():
if compound in question_lower:
return formula
# Enhanced units and conversions
if any(word in question_lower for word in ['meter', 'kilogram', 'second', 'celsius', 'fahrenheit']):
if 'freezing point' in question_lower and 'water' in question_lower:
if 'celsius' in question_lower:
return '0'
elif 'fahrenheit' in question_lower:
return '32'
# Enhanced colors and basic facts
if 'color' in question_lower or 'colour' in question_lower:
if 'sun' in question_lower:
return 'yellow'
elif 'grass' in question_lower:
return 'green'
elif 'sky' in question_lower:
return 'blue'
# GAIA-specific fallback for research questions
if any(word in question_lower for word in ['when', 'where', 'who', 'what', 'which', 'how']):
return "Information not available without web search"
# Default fallback with instruction
return "Unable to determine answer without additional tools"
def cleanup(self):
"""🧹 Cleanup temporary resources"""
pass
# Backward compatibility aliases
class MultiModelGAIASystem(EnhancedMultiModelGAIASystem):
"""Alias for backward compatibility"""
pass
def create_gaia_system(hf_token: str = None, openai_key: str = None) -> EnhancedMultiModelGAIASystem:
"""🚀 Create an enhanced GAIA system with all advanced capabilities"""
return EnhancedMultiModelGAIASystem(hf_token=hf_token, openai_key=openai_key)
class BasicAgent:
"""🤖 GAIA-compatible agent interface with comprehensive tool calling"""
def __init__(self, hf_token: str = None, openai_key: str = None):
self.system = create_gaia_system(hf_token, openai_key)
logger.info("🤖 BasicAgent with enhanced GAIA capabilities initialized")
def query(self, question: str) -> str:
"""Process GAIA question with full tool calling support"""
try:
result = self.system.query_with_tools(question)
return result
except Exception as e:
logger.error(f"❌ Agent query failed: {e}")
return self.system._fallback_response(question)
def clean_for_api_submission(self, response: str) -> str:
"""Clean response for GAIA API submission"""
return self.system._extract_final_answer(response)
def __call__(self, question: str) -> str:
"""Callable interface for backward compatibility"""
return self.query(question)
def cleanup(self):
"""Cleanup resources"""
self.system.cleanup()
# Test function for comprehensive validation
def test_enhanced_gaia_system():
"""🧪 Test the enhanced GAIA system with tool calling"""
print("🧪 Testing Enhanced GAIA System with Tool Calling")
# Initialize the system
agent = BasicAgent()
# Test questions requiring different tools
test_questions = [
"What is 15 + 27?", # Calculator
"What is the capital of France?", # Fallback knowledge
"Search for the current weather in Paris", # Web search
"How many planets are in our solar system?", # Fallback knowledge
"What is 2 * 3 + 4?", # Calculator
]
print("\n" + "="*50)
print("🎯 ENHANCED GAIA COMPLIANCE TEST")
print("="*50)
for question in test_questions:
print(f"\nQ: {question}")
response = agent.query(question)
print(f"A: {response}") # Should be clean, direct answers with tool usage
# Cleanup
agent.cleanup()
print("\n✅ Enhanced GAIA system test complete!")
if __name__ == "__main__":
test_enhanced_gaia_system() |