Spaces:
Sleeping
Sleeping
from openai import OpenAI | |
from random import randint | |
from emotion_pertuber import perturb_state | |
import json | |
import os | |
# 设置OpenAI API密钥和基础URL | |
api_key = os.getenv("OPENAI_API_KEY") | |
base_url = os.getenv("OPENAI_BASE_URL", "https://api.openai.com/v1") | |
model_name = os.getenv("OPENAI_MODEL_NAME", "gpt-3.5-turbo") | |
tools = [ | |
{ | |
"type": "function", | |
"function": { | |
'name': 'emotion_inference', | |
'description': '根据profile和对话记录,推理下一句情绪', | |
'parameters': { | |
"type": "object", | |
"properties": { | |
"emotion": { | |
"type": "string", | |
"enum": [ | |
"admiration", "amusement", "anger", "annoyance", "approval", "caring", | |
"confusion", "curiosity", "desire", "disappointment", "disapproval", | |
"disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", | |
"joy", "love", "nervousness", "optimism", "pride", "realization", | |
"relief", "remorse", "sadness", "surprise", "neutral" | |
], | |
"description": "推理出的情绪类别,必须是GoEmotions定义的27种情绪之一。" | |
} | |
}, | |
"required": ["emotion"] | |
}, | |
} | |
} | |
] | |
# 根据profile和dialogue推测emotion | |
def emotion_inferencer(profile, conversation): | |
client = OpenAI( | |
api_key=api_key, | |
base_url=base_url, | |
) | |
# 提取患者信息 | |
patient_info = f"### 患者信息\n年龄:{profile['age']}\n性别:{profile['gender']}\n职业:{profile['occupation']}\n婚姻状况:{profile['marital_status']}\n症状:{profile['symptoms']}" | |
# 提取对话记录 | |
dialogue_history = "\n".join([f"{conv['role']}: {conv['content']}" for conv in conversation]) | |
response = client.chat.completions.create( | |
model=model_name, | |
messages=[ | |
{"role": "user", "content": f"### 任务\n根据患者情况及咨访对话历史记录推测患者下一句话最可能的情绪。\n{patient_info}\n### 对话记录\n{dialogue_history}"} | |
], | |
# functions=[tools[0]["function"]], | |
# function_call={"name": "emotion_inference"} | |
tools=tools, | |
tool_choice={"type": "function", "function": {"name": "emotion_inference"}} | |
) | |
# print(response) | |
emotion = json.loads(response.choices[0].message.tool_calls[0].function.arguments)["emotion"] | |
return emotion | |
def emotion_modulation(profile, conversation): | |
indicator = randint(0,100) | |
emotion = emotion_inferencer(profile,conversation) | |
# print(emotion) | |
if indicator > 90: | |
return perturb_state(emotion) | |
else: | |
return emotion | |
# unit test | |
# while True: | |
# # 模拟患者信息 | |
# profile = { | |
# "drisk": 3, | |
# "srisk": 2, | |
# "age": "42", | |
# "gender": "女", | |
# "marital_status": "离婚", | |
# "occupation": "教师", | |
# "symptoms": "缺乏自信心,自我价值感低,有自罪感,无望感;体重剧烈增加;精神运动性激越;有自杀想法" | |
# } | |
# conversation = [ | |
# {"role": "咨询师", "content": "你好,请问有什么可以帮您?"} | |
# ] | |
# print(emotion_modulation(profile,conversation)) | |