from fastapi import FastAPI, UploadFile, File, HTTPException from tensorflow.keras.models import load_model, Sequential from tensorflow.keras.layers import Dense, LSTM from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler import numpy as np import tempfile import os app = FastAPI() @app.post("/predict") async def predict(model: UploadFile = File(...), data: str = None): try: # Save the uploaded model to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".h5") as temp_model_file: temp_model_file.write(await model.read()) temp_model_path = temp_model_file.name # Load the model model = load_model(temp_model_path, compile=False) # Process the data data = np.array(eval(data)).reshape(1, 12, 1) predictions = model.predict(data).tolist() return {"predictions": predictions} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/retrain") async def retrain(model: UploadFile = File(...), data: UploadFile = File(...)): try: # Save the uploaded model and data to temporary files with tempfile.NamedTemporaryFile(delete=False, suffix=".h5") as temp_model_file: temp_model_file.write(await model.read()) temp_model_path = temp_model_file.name with tempfile.NamedTemporaryFile(delete=False, suffix=".npy") as temp_data_file: temp_data_file.write(await data.read()) temp_data_path = temp_data_file.name # Load the model and data model = load_model(temp_model_path, compile=False) dataset = np.load(temp_data_path) # Normalize the data scaler = MinMaxScaler() dataset_normalized = scaler.fit_transform(dataset) # Retrain the model x_train = [] y_train = [] for i in range(12, len(dataset_normalized)): x_train.append(dataset_normalized[i-12:i, 0]) y_train.append(dataset_normalized[i, 0]) x_train = np.array(x_train).reshape(-1, 12, 1) y_train = np.array(y_train) model.compile(optimizer=Adam(learning_rate=0.001), loss="mse", run_eagerly=True) model.fit(x_train, y_train, epochs=10, batch_size=32) # Save the updated model to a temporary file updated_model_path = temp_model_path.replace(".h5", "_updated.h5") model.save(updated_model_path) return {"message": "Model retrained successfully.", "updated_model_path": updated_model_path} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) finally: # Clean up temporary files if os.path.exists(temp_model_path): os.remove(temp_model_path) if os.path.exists(temp_data_path): os.remove(temp_data_path)