Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gradio as gr | |
import threading | |
import time | |
# Global variables to store the model and tokenizer | |
model = None | |
tokenizer = None | |
model_loading_lock = threading.Lock() | |
model_loaded = False # Status flag to indicate if the model is loaded | |
def load_model(model_name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"): | |
global model, tokenizer, model_loaded | |
with model_loading_lock: | |
if not model_loaded: | |
print("Loading model...") | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="sequential", | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
low_cpu_mem_usage=True, | |
offload_folder="offload" | |
) | |
model_loaded = True | |
print("Model loaded successfully.") | |
else: | |
print("Model already loaded.") | |
def check_model_status(): | |
"""Check if the model is loaded and reload if necessary.""" | |
global model_loaded | |
if not model_loaded: | |
print("Model not loaded. Reloading...") | |
load_model() | |
return model_loaded | |
def chat(message, history, temperature, max_new_tokens): | |
global model, tokenizer | |
stop_tokens = ["|im_end|"] | |
# Ensure the model is loaded before proceeding | |
if not check_model_status(): | |
yield "Model is not ready. Please try again later.", "" | |
return | |
prompt = f"Human: {message}\n\nAssistant:" | |
# Tokenize the input | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Stream the response | |
start_time = time.time() | |
token_count = 0 | |
# Create a TextStreamer for token streaming | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=inputs.input_ids, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id, | |
streamer=streamer # Use the TextStreamer here | |
) | |
# Create and start the thread with the model.generate function | |
t = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for new_token in streamer: | |
outputs.append(new_token) | |
token_count += 1 | |
# Calculate tokens per second | |
elapsed_time = time.time() - start_time | |
tokens_per_second = token_count / elapsed_time if elapsed_time > 0 else 0 | |
# Update the token status | |
token_status_value = f"Tokens Generated: {token_count}, Tokens/Second: {tokens_per_second:.2f}" | |
yield "".join(outputs), token_status_value | |
if any(stop_token in new_token for stop_token in stop_tokens): | |
break | |
def reload_model_button(): | |
"""Reload the model manually via a button.""" | |
global model_loaded | |
model_loaded = False | |
load_model() | |
return "Model reloaded successfully." | |
# Function to periodically update the status text | |
def update_status_periodically(status_text): | |
while True: | |
time.sleep(5) # Update every 5 seconds | |
status = "Model is loaded and ready." if model_loaded else "Model is not loaded." | |
status_text.value = status # Update the value directly | |
# Gradio Interface | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# DeepSeek-R1 Chatbot") | |
gr.Markdown("DeepSeek-R1-Distill-Qwen-1.5B λͺ¨λΈμ μ¬μ©ν λν ν μ€νΈμ© λ°λͺ¨μ λλ€.") | |
with gr.Row(): | |
chatbot = gr.Chatbot(height=600) | |
textbox = gr.Textbox(placeholder="Enter your message...", container=False, scale=7) | |
with gr.Row(): | |
send_button = gr.Button("Send") | |
clear_button = gr.Button("Clear") | |
reload_button = gr.Button("Reload Model") | |
with gr.Row(): | |
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") | |
max_tokens_slider = gr.Slider(minimum=32, maximum=2048, value=2048, step=32, label="Max New Tokens") | |
status_text = gr.Textbox(label="Model Status", value="Model not loaded yet.", interactive=False) | |
token_status = gr.Textbox(label="Token Generation Status", value="", interactive=False) | |
def respond(message, chat_history, temperature, max_new_tokens): | |
bot_message = "" | |
for partial_response, token_status_value in chat(message, chat_history, temperature, max_new_tokens): | |
bot_message = partial_response | |
yield "", chat_history + [(message, bot_message)], gr.update(value=token_status_value) | |
send_button.click(respond, inputs=[textbox, chatbot, temperature_slider, max_tokens_slider], outputs=[textbox, chatbot, token_status]) | |
clear_button.click(lambda: [], None, chatbot) | |
reload_button.click(reload_model_button, None, status_text) | |
# Start a background thread to update the status text periodically | |
threading.Thread(target=update_status_periodically, args=(status_text,), daemon=True).start() | |
# Load the model when the server starts | |
if __name__ == "__main__": | |
load_model() # Pre-load the model | |
demo.launch(server_name="0.0.0.0") |