import cv2 import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.applications.resnet import ResNet152 from tensorflow.keras.layers import AveragePooling2D, Flatten from tensorflow.keras.models import Model from tqdm import tqdm import os class FeatureExtractor: def __init__(self, img_shape, channels): self.seq_length = 40 # Number of frames to process self.height = img_shape[0] self.width = img_shape[1] self.channels = channels # Load ResNet152 model without the top fully connected layer self.base_model = ResNet152(include_top=False, input_shape=(224, 224, 3), weights='imagenet') # Freeze the base model layers for layer in self.base_model.layers: layer.trainable = False # Adding an Average Pooling layer followed by Flatten self.op = self.base_model.output self.x_model = AveragePooling2D((7, 7), name='avg_pool')(self.op) self.x_model = Flatten()(self.x_model) # Create the feature extraction model self.model = Model(self.base_model.input, self.x_model) def extract_feature(self, frames_buffer): x_op = np.zeros((2048, 40)) # Shape (features_dim, seq_length) for i in range(len(frames_buffer)): x_t = frames_buffer[i] x_t = cv2.resize(x_t, (224, 224)) # Resize each frame to the required input size x_t = np.expand_dims(x_t, axis=0) # Add batch dimension x = self.model.predict(x_t) x_op[:, i] = x return x_op