import numpy as np from tensorflow.keras.models import load_model from FeatureExtraction import FeatureExtractor model = load_model('orignal_model_b32.h5') model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) def predict_fight(frames_buffer, threshold, feature_extractor): features_sequence = feature_extractor.extract_feature(frames_buffer) features_sequence = np.transpose(features_sequence, (1, 0)) features_sequence = np.expand_dims(features_sequence, axis=0) prediction = model.predict(features_sequence) fight_prob = prediction[0][0] fight_detected = fight_prob > threshold return fight_detected, fight_prob