Spaces:
Runtime error
Runtime error
# app.py | |
import time | |
import whisper | |
from fastapi import FastAPI, UploadFile, File, HTTPException | |
from fastapi.responses import FileResponse | |
from typing import Optional | |
import os | |
import psutil | |
app = FastAPI() | |
start_time = time.time() | |
MODEL_CACHE_DIR = "./model_cache" # Use writable directory | |
# Create cache directory if not exists | |
os.makedirs(MODEL_CACHE_DIR, exist_ok=True) | |
# Load model during startup | |
def load_model(): | |
try: | |
# Load model directly into memory with explicit cache dir | |
app.state.model = whisper.load_model( | |
"large", | |
download_root=MODEL_CACHE_DIR, | |
in_memory=True # Force in-memory loading | |
) | |
print(f"Model loaded successfully on device: {app.state.model.device}") | |
except Exception as e: | |
print(f"Error loading model: {str(e)}") | |
raise RuntimeError("Failed to load Whisper model") | |
def format_time(seconds: float) -> str: | |
"""Convert seconds to SRT time format""" | |
milliseconds = int((seconds - int(seconds)) * 1000) | |
hours = int(seconds // 3600) | |
minutes = int((seconds % 3600) // 60) | |
seconds = int(seconds % 60) | |
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}" | |
def generate_srt(transcript: dict) -> str: | |
"""Generate SRT content from Whisper transcript""" | |
srt_content = [] | |
index = 1 | |
for segment in transcript['segments']: | |
for word in segment.get('words', []): | |
start = word['start'] | |
end = word['end'] | |
start_time = format_time(start) | |
end_time = format_time(end) | |
srt_content.append( | |
f"{index}\n" | |
f"{start_time} --> {end_time}\n" | |
f"{word['word'].strip()}\n\n" | |
) | |
index += 1 | |
return "".join(srt_content) | |
async def transcribe_audio( | |
file: UploadFile = File(..., description="Audio/video file to transcribe"), | |
task_token: Optional[str] = None | |
): | |
"""Endpoint for submitting transcription tasks""" | |
try: | |
# Save uploaded file temporarily | |
temp_file = f"temp_{file.filename}" | |
with open(temp_file, "wb") as buffer: | |
content = await file.read() | |
buffer.write(content) | |
# Transcribe audio | |
result = app.state.model.transcribe( | |
temp_file, | |
word_timestamps=True | |
) | |
# Generate SRT file | |
srt_content = generate_srt(result) | |
srt_file = f"{temp_file}.srt" | |
with open(srt_file, "w") as f: | |
f.write(srt_content) | |
# Clean up temporary files | |
os.remove(temp_file) | |
return FileResponse( | |
srt_file, | |
media_type='application/x-subrip', | |
filename=f"{file.filename}.srt" | |
) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
finally: | |
if os.path.exists(temp_file): | |
os.remove(temp_file) | |
if os.path.exists(srt_file): | |
os.remove(srt_file) | |
async def get_status(): | |
"""Get server health status""" | |
process = psutil.Process(os.getpid()) | |
return { | |
"status": "OK", | |
"uptime": round(time.time() - start_time, 2), | |
"memory_usage": f"{process.memory_info().rss / 1024 / 1024:.2f} MB", | |
"model_loaded": hasattr(app.state, "model"), | |
"active_requests": len(process.connections()) | |
} | |
async def get_model_status(): | |
"""Get model information""" | |
if not hasattr(app.state, "model"): | |
return {"model_status": "Not loaded"} | |
return { | |
"model_name": "Whisper large", | |
"device": app.state.model.device, | |
"parameters": f"{sum(p.numel() for p in app.state.model.parameters()):,}" | |
} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) |