Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import time
|
3 |
+
import whisper
|
4 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
5 |
+
from fastapi.responses import FileResponse
|
6 |
+
from typing import Optional
|
7 |
+
import os
|
8 |
+
import psutil
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
start_time = time.time()
|
12 |
+
|
13 |
+
# Load model during startup
|
14 |
+
@app.on_event("startup")
|
15 |
+
def load_model():
|
16 |
+
try:
|
17 |
+
app.state.model = whisper.load_model("large")
|
18 |
+
print("Model loaded successfully")
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error loading model: {e}")
|
21 |
+
raise
|
22 |
+
|
23 |
+
def format_time(seconds: float) -> str:
|
24 |
+
"""Convert seconds to SRT time format"""
|
25 |
+
milliseconds = int((seconds - int(seconds)) * 1000)
|
26 |
+
hours = int(seconds // 3600)
|
27 |
+
minutes = int((seconds % 3600) // 60)
|
28 |
+
seconds = int(seconds % 60)
|
29 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
30 |
+
|
31 |
+
def generate_srt(transcript: dict) -> str:
|
32 |
+
"""Generate SRT content from Whisper transcript"""
|
33 |
+
srt_content = []
|
34 |
+
index = 1
|
35 |
+
for segment in transcript['segments']:
|
36 |
+
for word in segment.get('words', []):
|
37 |
+
start = word['start']
|
38 |
+
end = word['end']
|
39 |
+
start_time = format_time(start)
|
40 |
+
end_time = format_time(end)
|
41 |
+
srt_content.append(
|
42 |
+
f"{index}\n"
|
43 |
+
f"{start_time} --> {end_time}\n"
|
44 |
+
f"{word['word'].strip()}\n\n"
|
45 |
+
)
|
46 |
+
index += 1
|
47 |
+
return "".join(srt_content)
|
48 |
+
|
49 |
+
@app.post("/transcribe")
|
50 |
+
async def transcribe_audio(
|
51 |
+
file: UploadFile = File(..., description="Audio/video file to transcribe"),
|
52 |
+
task_token: Optional[str] = None
|
53 |
+
):
|
54 |
+
"""Endpoint for submitting transcription tasks"""
|
55 |
+
try:
|
56 |
+
# Save uploaded file temporarily
|
57 |
+
temp_file = f"temp_{file.filename}"
|
58 |
+
with open(temp_file, "wb") as buffer:
|
59 |
+
content = await file.read()
|
60 |
+
buffer.write(content)
|
61 |
+
|
62 |
+
# Transcribe audio
|
63 |
+
result = app.state.model.transcribe(
|
64 |
+
temp_file,
|
65 |
+
word_timestamps=True
|
66 |
+
)
|
67 |
+
|
68 |
+
# Generate SRT file
|
69 |
+
srt_content = generate_srt(result)
|
70 |
+
srt_file = f"{temp_file}.srt"
|
71 |
+
with open(srt_file, "w") as f:
|
72 |
+
f.write(srt_content)
|
73 |
+
|
74 |
+
# Clean up temporary files
|
75 |
+
os.remove(temp_file)
|
76 |
+
|
77 |
+
return FileResponse(
|
78 |
+
srt_file,
|
79 |
+
media_type='application/x-subrip',
|
80 |
+
filename=f"{file.filename}.srt"
|
81 |
+
)
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
raise HTTPException(status_code=500, detail=str(e))
|
85 |
+
finally:
|
86 |
+
if os.path.exists(temp_file):
|
87 |
+
os.remove(temp_file)
|
88 |
+
if os.path.exists(srt_file):
|
89 |
+
os.remove(srt_file)
|
90 |
+
|
91 |
+
@app.get("/status")
|
92 |
+
async def get_status():
|
93 |
+
"""Get server health status"""
|
94 |
+
process = psutil.Process(os.getpid())
|
95 |
+
return {
|
96 |
+
"status": "OK",
|
97 |
+
"uptime": round(time.time() - start_time, 2),
|
98 |
+
"memory_usage": f"{process.memory_info().rss / 1024 / 1024:.2f} MB",
|
99 |
+
"model_loaded": hasattr(app.state, "model"),
|
100 |
+
"active_requests": len(process.connections())
|
101 |
+
}
|
102 |
+
|
103 |
+
@app.get("/model_status")
|
104 |
+
async def get_model_status():
|
105 |
+
"""Get model information"""
|
106 |
+
if not hasattr(app.state, "model"):
|
107 |
+
return {"model_status": "Not loaded"}
|
108 |
+
|
109 |
+
return {
|
110 |
+
"model_name": "Whisper large",
|
111 |
+
"device": app.state.model.device,
|
112 |
+
"parameters": f"{sum(p.numel() for p in app.state.model.parameters()):,}"
|
113 |
+
}
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
import uvicorn
|
117 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|