Spaces:
Build error
Build error
File size: 12,965 Bytes
20b9e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import time
import json
import random
import string
import pathlib
import tempfile
import logging
import torch
import whisperx
import librosa
import numpy as np
import requests
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse
app = FastAPI(title="WhisperX API")
# -------------------------------
# Logging and Model Setup
# -------------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("whisperx_api")
device = "cpu"
compute_type = "int8"
torch.set_num_threads(os.cpu_count())
# Pre-load models for different sizes
models = {
"tiny": whisperx.load_model("tiny", device, compute_type=compute_type, vad_method='silero'),
"base": whisperx.load_model("base", device, compute_type=compute_type, vad_method='silero'),
"small": whisperx.load_model("small", device, compute_type=compute_type, vad_method='silero'),
"large": whisperx.load_model("large", device, compute_type=compute_type, vad_method='silero'),
"large-v2": whisperx.load_model("large-v2", device, compute_type=compute_type, vad_method='silero'),
"large-v3": whisperx.load_model("large-v3", device, compute_type=compute_type, vad_method='silero'),
}
def seconds_to_srt_time(seconds: float) -> str:
"""Convert seconds (float) into SRT timestamp format (HH:MM:SS,mmm)."""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millis = int((seconds - int(seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
# -------------------------------
# Vocal Extraction Function
# -------------------------------
def get_vocals(input_file):
try:
session_hash = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
file_id = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
file_content = pathlib.Path(input_file).read_bytes()
file_len = len(file_content)
r = requests.post(
f'https://politrees-audio-separator-uvr.hf.space/gradio_api/upload?upload_id={file_id}',
files={'files': open(input_file, 'rb')}
)
json_data = r.json()
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.5',
'content-type': 'application/json',
'origin': 'https://politrees-audio-separator-uvr.hf.space',
'priority': 'u=1, i',
'referer': 'https://politrees-audio-separator-uvr.hf.space/?__theme=system',
'sec-ch-ua': '"Not(A:Brand";v="99", "Brave";v="133", "Chromium";v="133"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'sec-fetch-storage-access': 'none',
'sec-gpc': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36',
}
params = {
'__theme': 'system',
}
json_payload = {
'data': [
{
'path': json_data[0],
'url': 'https://politrees-audio-separator-uvr.hf.space/gradio_api/file=' + json_data[0],
'orig_name': pathlib.Path(input_file).name,
'size': file_len,
'mime_type': 'audio/wav',
'meta': {'_type': 'gradio.FileData'},
},
'MelBand Roformer | Vocals by Kimberley Jensen',
256,
False,
5,
0,
'/tmp/audio-separator-models/',
'output',
'wav',
0.9,
0,
1,
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
],
'event_data': None,
'fn_index': 5,
'trigger_id': 28,
'session_hash': session_hash,
}
response = requests.post(
'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/join',
params=params,
headers=headers,
json=json_payload,
)
max_retries = 5
retry_delay = 5
retry_count = 0
while retry_count < max_retries:
try:
logger.info(f"Connecting to stream... Attempt {retry_count + 1}")
r = requests.get(
f'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/data?session_hash={session_hash}',
stream=True
)
if r.status_code != 200:
raise Exception(f"Failed to connect: HTTP {r.status_code}")
logger.info("Connected successfully.")
for line in r.iter_lines():
if line:
json_resp = json.loads(line.decode('utf-8').replace('data: ', ''))
logger.info(json_resp)
if 'process_completed' in json_resp['msg']:
logger.info("Process completed.")
output_url = json_resp['output']['data'][1]['url']
logger.info(f"Output URL: {output_url}")
return output_url
logger.info("Stream ended prematurely. Reconnecting...")
except Exception as e:
logger.error(f"Error occurred: {e}. Retrying...")
retry_count += 1
time.sleep(retry_delay)
logger.error("Max retries reached. Exiting.")
return None
except Exception as ex:
logger.error(f"Unexpected error in get_vocals: {ex}")
return None
def split_audio_by_pause(audio, sr, pause_threshold, top_db=30, energy_threshold=0.03):
intervals = librosa.effects.split(audio, top_db=top_db)
merged_intervals = []
current_start, current_end = intervals[0]
for start, end in intervals[1:]:
gap_duration = (start - current_end) / sr
if gap_duration < pause_threshold:
current_end = end
else:
merged_intervals.append((current_start, current_end))
current_start, current_end = start, end
merged_intervals.append((current_start, current_end))
# Filter out segments with low average RMS energy
filtered_intervals = []
for start, end in merged_intervals:
segment = audio[start:end]
rms = np.mean(librosa.feature.rms(y=segment))
if rms >= energy_threshold:
filtered_intervals.append((start, end))
return filtered_intervals
# -------------------------------
# Main Transcription Function
# -------------------------------
def transcribe(audio_file, model_size="base", debug=False, pause_threshold=0.0, vocal_extraction=False, language="en"):
start_time = time.time()
srt_output = ""
debug_log = []
subtitle_index = 1
try:
# Optionally extract vocals first
if vocal_extraction:
debug_log.append("Vocal extraction enabled; processing input file for vocals...")
extracted_url = get_vocals(audio_file)
if extracted_url is not None:
debug_log.append("Vocal extraction succeeded; downloading extracted audio...")
response = requests.get(extracted_url)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tmp.write(response.content)
audio_file = tmp.name
debug_log.append("Extracted audio downloaded and saved for transcription.")
else:
debug_log.append("Failed to download extracted audio; proceeding with original file.")
else:
debug_log.append("Vocal extraction failed; proceeding with original audio.")
# Load audio file (resampled to 16kHz)
audio, sr = librosa.load(audio_file, sr=16000)
debug_log.append(f"Audio loaded: {len(audio)/sr:.2f} seconds at {sr} Hz")
# Select model and set batch size
model = models[model_size]
batch_size = 8 if model_size == "tiny" else 4
# Transcribe using specified language (or auto-detect)
if language:
transcript = model.transcribe(audio, batch_size=batch_size, language=language)
else:
transcript = model.transcribe(audio, batch_size=batch_size)
language = transcript.get("language", "unknown")
# Load alignment model for the given language
model_a, metadata = whisperx.load_align_model(language_code=language, device=device)
if pause_threshold > 0:
segments = split_audio_by_pause(audio, sr, pause_threshold)
debug_log.append(f"Audio split into {len(segments)} segment(s) using pause threshold of {pause_threshold}s")
for seg_idx, (seg_start, seg_end) in enumerate(segments):
audio_segment = audio[seg_start:seg_end]
seg_duration = (seg_end - seg_start) / sr
debug_log.append(f"Segment {seg_idx+1}: start={seg_start/sr:.2f}s, duration={seg_duration:.2f}s")
seg_transcript = model.transcribe(audio_segment, batch_size=batch_size, language=language)
seg_aligned = whisperx.align(
seg_transcript["segments"], model_a, metadata, audio_segment, device
)
for segment in seg_aligned["segments"]:
for word in segment["words"]:
adjusted_start = word['start'] + seg_start/sr
adjusted_end = word['end'] + seg_start/sr
start_timestamp = seconds_to_srt_time(adjusted_start)
end_timestamp = seconds_to_srt_time(adjusted_end)
srt_output += f"{subtitle_index}\n{start_timestamp} --> {end_timestamp}\n{word['word']}\n\n"
subtitle_index += 1
else:
# Process the entire audio without splitting
transcript = model.transcribe(audio, batch_size=batch_size, language=language)
aligned = whisperx.align(
transcript["segments"], model_a, metadata, audio, device
)
for segment in aligned["segments"]:
for word in segment["words"]:
start_timestamp = seconds_to_srt_time(word['start'])
end_timestamp = seconds_to_srt_time(word['end'])
srt_output += f"{subtitle_index}\n{start_timestamp} --> {end_timestamp}\n{word['word']}\n\n"
subtitle_index += 1
debug_log.append(f"Language used: {language}")
debug_log.append(f"Batch size: {batch_size}")
debug_log.append(f"Processed in {time.time()-start_time:.2f}s")
except Exception as e:
logger.error("Error during transcription:", exc_info=True)
srt_output = "Error occurred during transcription"
debug_log.append(f"ERROR: {str(e)}")
if debug:
return srt_output, "\n".join(debug_log)
return srt_output
# -------------------------------
# FastAPI Endpoints
# -------------------------------
@app.post("/transcribe")
async def transcribe_endpoint(
audio_file: UploadFile = File(...),
model_size: str = Form("base"),
debug: bool = Form(False),
pause_threshold: float = Form(0.0),
vocal_extraction: bool = Form(False),
language: str = Form("en")
):
try:
# Save the uploaded file to a temporary location
suffix = pathlib.Path(audio_file.filename).suffix
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
tmp.write(await audio_file.read())
tmp_path = tmp.name
result = transcribe(tmp_path, model_size=model_size, debug=debug,
pause_threshold=pause_threshold,
vocal_extraction=vocal_extraction,
language=language)
os.remove(tmp_path)
if debug:
srt_text, debug_info = result
return JSONResponse(content={"srt": srt_text, "debug": debug_info})
else:
return JSONResponse(content={"srt": result})
except Exception as e:
logger.error(f"Error in transcribe_endpoint: {e}", exc_info=True)
raise HTTPException(status_code=500, detail="Internal server error")
@app.get("/")
async def root():
return {"message": "WhisperX API is running."}
|