File size: 12,965 Bytes
20b9e25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import time
import json
import random
import string
import pathlib
import tempfile
import logging

import torch
import whisperx
import librosa
import numpy as np
import requests

from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse

app = FastAPI(title="WhisperX API")

# -------------------------------
# Logging and Model Setup
# -------------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("whisperx_api")

device = "cpu"
compute_type = "int8"
torch.set_num_threads(os.cpu_count())

# Pre-load models for different sizes
models = {
    "tiny": whisperx.load_model("tiny", device, compute_type=compute_type, vad_method='silero'),
    "base": whisperx.load_model("base", device, compute_type=compute_type, vad_method='silero'),
    "small": whisperx.load_model("small", device, compute_type=compute_type, vad_method='silero'),
    "large": whisperx.load_model("large", device, compute_type=compute_type, vad_method='silero'),
    "large-v2": whisperx.load_model("large-v2", device, compute_type=compute_type, vad_method='silero'),
    "large-v3": whisperx.load_model("large-v3", device, compute_type=compute_type, vad_method='silero'),
}

def seconds_to_srt_time(seconds: float) -> str:
    """Convert seconds (float) into SRT timestamp format (HH:MM:SS,mmm)."""
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    secs = int(seconds % 60)
    millis = int((seconds - int(seconds)) * 1000)
    return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"

# -------------------------------
# Vocal Extraction Function
# -------------------------------
def get_vocals(input_file):
    try:
        session_hash = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
        file_id = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
        file_content = pathlib.Path(input_file).read_bytes()
        file_len = len(file_content)
        r = requests.post(
            f'https://politrees-audio-separator-uvr.hf.space/gradio_api/upload?upload_id={file_id}', 
            files={'files': open(input_file, 'rb')}
        )
        json_data = r.json()

        headers = {
            'accept': '*/*',
            'accept-language': 'en-US,en;q=0.5',
            'content-type': 'application/json',
            'origin': 'https://politrees-audio-separator-uvr.hf.space',
            'priority': 'u=1, i',
            'referer': 'https://politrees-audio-separator-uvr.hf.space/?__theme=system',
            'sec-ch-ua': '"Not(A:Brand";v="99", "Brave";v="133", "Chromium";v="133"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Windows"',
            'sec-fetch-dest': 'empty',
            'sec-fetch-mode': 'cors',
            'sec-fetch-site': 'same-origin',
            'sec-fetch-storage-access': 'none',
            'sec-gpc': '1',
            'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36',
        }

        params = {
            '__theme': 'system',
        }

        json_payload = {
            'data': [
                {
                    'path': json_data[0],
                    'url': 'https://politrees-audio-separator-uvr.hf.space/gradio_api/file=' + json_data[0],
                    'orig_name': pathlib.Path(input_file).name,
                    'size': file_len,
                    'mime_type': 'audio/wav',
                    'meta': {'_type': 'gradio.FileData'},
                },
                'MelBand Roformer | Vocals by Kimberley Jensen',
                256,
                False,
                5,
                0,
                '/tmp/audio-separator-models/',
                'output',
                'wav',
                0.9,
                0,
                1,
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
            ],
            'event_data': None,
            'fn_index': 5,
            'trigger_id': 28,
            'session_hash': session_hash,
        }

        response = requests.post(
            'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/join',
            params=params,
            headers=headers,
            json=json_payload,
        )

        max_retries = 5
        retry_delay = 5
        retry_count = 0
        while retry_count < max_retries:
            try:
                logger.info(f"Connecting to stream... Attempt {retry_count + 1}")
                r = requests.get(
                    f'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/data?session_hash={session_hash}',
                    stream=True
                )
                if r.status_code != 200:
                    raise Exception(f"Failed to connect: HTTP {r.status_code}")
                logger.info("Connected successfully.")
                for line in r.iter_lines():
                    if line:
                        json_resp = json.loads(line.decode('utf-8').replace('data: ', ''))
                        logger.info(json_resp)
                        if 'process_completed' in json_resp['msg']:
                            logger.info("Process completed.")
                            output_url = json_resp['output']['data'][1]['url']
                            logger.info(f"Output URL: {output_url}")
                            return output_url
                logger.info("Stream ended prematurely. Reconnecting...")
            except Exception as e:
                logger.error(f"Error occurred: {e}. Retrying...")
            retry_count += 1
            time.sleep(retry_delay)
        logger.error("Max retries reached. Exiting.")
        return None
    except Exception as ex:
        logger.error(f"Unexpected error in get_vocals: {ex}")
        return None

def split_audio_by_pause(audio, sr, pause_threshold, top_db=30, energy_threshold=0.03):
    intervals = librosa.effects.split(audio, top_db=top_db)
    merged_intervals = []
    current_start, current_end = intervals[0]
    for start, end in intervals[1:]:
        gap_duration = (start - current_end) / sr
        if gap_duration < pause_threshold:
            current_end = end
        else:
            merged_intervals.append((current_start, current_end))
            current_start, current_end = start, end
    merged_intervals.append((current_start, current_end))
    # Filter out segments with low average RMS energy
    filtered_intervals = []
    for start, end in merged_intervals:
        segment = audio[start:end]
        rms = np.mean(librosa.feature.rms(y=segment))
        if rms >= energy_threshold:
            filtered_intervals.append((start, end))
    return filtered_intervals

# -------------------------------
# Main Transcription Function
# -------------------------------
def transcribe(audio_file, model_size="base", debug=False, pause_threshold=0.0, vocal_extraction=False, language="en"):
    start_time = time.time()
    srt_output = ""
    debug_log = []
    subtitle_index = 1

    try:
        # Optionally extract vocals first
        if vocal_extraction:
            debug_log.append("Vocal extraction enabled; processing input file for vocals...")
            extracted_url = get_vocals(audio_file)
            if extracted_url is not None:
                debug_log.append("Vocal extraction succeeded; downloading extracted audio...")
                response = requests.get(extracted_url)
                if response.status_code == 200:
                    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
                        tmp.write(response.content)
                        audio_file = tmp.name
                    debug_log.append("Extracted audio downloaded and saved for transcription.")
                else:
                    debug_log.append("Failed to download extracted audio; proceeding with original file.")
            else:
                debug_log.append("Vocal extraction failed; proceeding with original audio.")

        # Load audio file (resampled to 16kHz)
        audio, sr = librosa.load(audio_file, sr=16000)
        debug_log.append(f"Audio loaded: {len(audio)/sr:.2f} seconds at {sr} Hz")

        # Select model and set batch size
        model = models[model_size]
        batch_size = 8 if model_size == "tiny" else 4

        # Transcribe using specified language (or auto-detect)
        if language:
            transcript = model.transcribe(audio, batch_size=batch_size, language=language)
        else:
            transcript = model.transcribe(audio, batch_size=batch_size)
            language = transcript.get("language", "unknown")

        # Load alignment model for the given language
        model_a, metadata = whisperx.load_align_model(language_code=language, device=device)

        if pause_threshold > 0:
            segments = split_audio_by_pause(audio, sr, pause_threshold)
            debug_log.append(f"Audio split into {len(segments)} segment(s) using pause threshold of {pause_threshold}s")
            for seg_idx, (seg_start, seg_end) in enumerate(segments):
                audio_segment = audio[seg_start:seg_end]
                seg_duration = (seg_end - seg_start) / sr
                debug_log.append(f"Segment {seg_idx+1}: start={seg_start/sr:.2f}s, duration={seg_duration:.2f}s")
                seg_transcript = model.transcribe(audio_segment, batch_size=batch_size, language=language)
                seg_aligned = whisperx.align(
                    seg_transcript["segments"], model_a, metadata, audio_segment, device
                )
                for segment in seg_aligned["segments"]:
                    for word in segment["words"]:
                        adjusted_start = word['start'] + seg_start/sr
                        adjusted_end = word['end'] + seg_start/sr
                        start_timestamp = seconds_to_srt_time(adjusted_start)
                        end_timestamp = seconds_to_srt_time(adjusted_end)
                        srt_output += f"{subtitle_index}\n{start_timestamp} --> {end_timestamp}\n{word['word']}\n\n"
                        subtitle_index += 1
        else:
            # Process the entire audio without splitting
            transcript = model.transcribe(audio, batch_size=batch_size, language=language)
            aligned = whisperx.align(
                transcript["segments"], model_a, metadata, audio, device
            )
            for segment in aligned["segments"]:
                for word in segment["words"]:
                    start_timestamp = seconds_to_srt_time(word['start'])
                    end_timestamp = seconds_to_srt_time(word['end'])
                    srt_output += f"{subtitle_index}\n{start_timestamp} --> {end_timestamp}\n{word['word']}\n\n"
                    subtitle_index += 1

        debug_log.append(f"Language used: {language}")
        debug_log.append(f"Batch size: {batch_size}")
        debug_log.append(f"Processed in {time.time()-start_time:.2f}s")

    except Exception as e:
        logger.error("Error during transcription:", exc_info=True)
        srt_output = "Error occurred during transcription"
        debug_log.append(f"ERROR: {str(e)}")

    if debug:
        return srt_output, "\n".join(debug_log)
    return srt_output

# -------------------------------
# FastAPI Endpoints
# -------------------------------
@app.post("/transcribe")
async def transcribe_endpoint(
    audio_file: UploadFile = File(...),
    model_size: str = Form("base"),
    debug: bool = Form(False),
    pause_threshold: float = Form(0.0),
    vocal_extraction: bool = Form(False),
    language: str = Form("en")
):
    try:
        # Save the uploaded file to a temporary location
        suffix = pathlib.Path(audio_file.filename).suffix
        with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
            tmp.write(await audio_file.read())
            tmp_path = tmp.name

        result = transcribe(tmp_path, model_size=model_size, debug=debug,
                            pause_threshold=pause_threshold,
                            vocal_extraction=vocal_extraction,
                            language=language)

        os.remove(tmp_path)

        if debug:
            srt_text, debug_info = result
            return JSONResponse(content={"srt": srt_text, "debug": debug_info})
        else:
            return JSONResponse(content={"srt": result})
    except Exception as e:
        logger.error(f"Error in transcribe_endpoint: {e}", exc_info=True)
        raise HTTPException(status_code=500, detail="Internal server error")

@app.get("/")
async def root():
    return {"message": "WhisperX API is running."}